Relationship Between Pharmacokinetic Parameters and Imaging Duration in Dynamic 11C-Acetate Cardiac PET/CT
-
摘要:
目的 评估成像时间对动态11C-乙酸盐(11C-acetate, 11C-AC)正电子发射断层显像(positron emission tomography, PET)检查心肌组织11C-AC药代动力学参数计算结果的影响,探究临床缩短成像时间的可行性。 方法 本研究为回顾性分析,研究对象为北京协和医院接受11C-AC PET/CT心脏成像检查的46名受试者(来自于一项评估饮酒男性心肌组织和代谢特征的临床研究)。每名受试者注射740 MBq 11C-AC后均进行40 min动态11C-AC PET/CT扫描。以从左心室血池中获取11C-AC的时间活度曲线作为输入函数,40 min(53帧)图像数据拟合得到的11C-AC药代动力学参数(K1值、k2值)为参考标准,从最后一帧依次减少纳入的动态图像帧数,计算不同成像时长动态数据对应的11C-AC药代动力学参数,与参考标准进行相关性与变化趋势一致性分析并进行差异性比较,以所有心肌节段中线性回归模型拟合优度评价指标R2均大于0.9时对应的时间为最短成像时间。 结果 当成像时间≥17 min(37帧)时所有心肌节段中的11C-AC药代动力学参数K1与k2值同参考标准的相关性均较好(R2均>0.9),心肌整体平均结果中K1值、k2值与参考标准拟合的线性回归模型的回归系数分别分布于0.982~1.007和0.783~1.000。当成像时间为17 min(37帧)时,左前降支、右冠状动脉以及左回旋支灌注区域的K1值、k2值与参考标准均具有显著差异(P均<0.001),其中左前降支灌注区域相对差异(relative difference, RD)最高[K1值:(3.93±1.98)%; k2值:(13.79±6.40)%],右冠状动脉灌注区域RD最低[K1值:(2.84±1.89)%; k2值:(9.74±5.62)%]。 结论 对于饮酒或健康的男性人群,心脏11C-AC PET/CT成像检查时,缩短成像时间至17 min(37帧)可获得与标准时间相一致的示踪剂药代动力学参数,为临床优化图像采集时间提供了一定的参考依据。 Abstract:Objective To evaluate the effect of imaging time on the pharmacokinetic parameters calculation of dynamic 11C-acetate cardiac positron emission tomography (PET) scan and to investigate the feasibility of shortening the imaging time in clinical practice. Methods This study was a retrospective analysis and 46 subjects who underwent 11C-acetate PET/CT cardiac imaging at Peking Union Medical College Hospital (from a clinical study assessing myocardial tissue and metabolic characteristics in men with alcohol consumption) were included. Each subject was injected with 740 MBq 11C-acetate before a 40-minute PET/CT scan, and time-activity curve in the left ventricle was collected as input function. Pharmacokinetic parameters (K1 and k2) calculated from the 40-minute dynamic data (53 frames) was regarded as the reference standard. The number of included dynamic image frames was sequentially reduced from the last frame, and the corresponding pharmacokinetic parameters of 11C-acetate were calculated. Correlation, consistent analysis of trends and the relative differences on pharmacokinetic parameters between shortened data and reference standard were evaluated. The shortest acceptable scan time was determined based on the criterion that the R2 of linear regression models was higher than 0.9 in all myocardial segments. Results The R2 between 11C-acetate pharmacokinetic parameters and the reference standard was higher than 0.9 in all myocardial segments at scan time ≥17 min (37 frames) for both K1 and k2. The regression coefficients of K1 values calculated from the shortened data and the reference standard in myocardium were distributed in the range of 0.982-1.007, and the regression coefficients of k2 values calculated from the shortened data and the reference standard were distributed in the range of 0.783-1.000. When the scan time was reduced to 17 min (37 frames), the K1 and k2 values of left anterior descending branch, right coronary artery and left circumflex branch perfusion regions were significantly different from the reference standard (all P < 0.05). Left anterior descending branch perfusion region had the highest relative difference (RD) [K1: (3.93±1.98)%; k2: (13.79±6.40)%], while right coronary perfusion region had the lowest RD [K1: (2.84±1.89)%; k2: (9.74±5.62)%]. Conclusions For the male population with alcohol consumption or are healthy, shortening the scan time to 17 min (37 frames) during dynamic 11C-acetate PET/CT cardiac imaging can obtain tracer pharmacokinetic parameters consistent with the reference standard, which can provide references for optimizing clinical image acquisition time. 作者贡献:刘帅、尚斐、霍力负责研究方案设计;龚坦、尚斐、刘帅负责实验实施及论文撰写;尚斐、刘帅、霍力、唐晓英负责文章修订。利益冲突:所有作者均声明不存在利益冲突 -
图 2 不同成像时间计算的11C-AC药代动力学参数与参考标准的相关性分析
1~17:17个心肌节段;LAD:左前降支;RCA:右冠状动脉;LCX:左回旋支;R2:线性回归模型拟合度评价;P值:线性回归模型显著性检验; 11C-AC:同图 1
图 3 17 min(37帧)成像时间图像数据计算的11C-AC药代动力学参数与参考标准的线性回归模型拟合结果
11C-AC:同图 1
图 4 17 min(37帧)成像时间图像数据拟合的17个心肌节段11C-AC药代动力学参数与参考标准的差异
RD:相对差异;11C-AC:同图 1
表 1 缩短成像时间获得的11C-AC药代动力学参数与参考标准拟合模型的回归系数
成像时间
(图像帧数)40 min
(53)38 min
(52)36 min
(51)34 min
(50)32 min
(49)30 min
(48)28 min
(47)26 min
(46)25 min
(45)K1值回归系数 1.000 1.002 1.004 1.005 1.006 1.007 1.007 1.006 1.006 k2值回归系数 1.000 1.000 1.000 0.998 0.994 0.989 0.981 0.970 0.956 成像时间
(图像帧数)24 min
(44)23 min
(43)22 min
(42)21 min
(41)20 min
(40)19 min
(39)18 min
(38)17 min
(37)K1值回归系数 1.005 1.003 1.002 0.999 0.997 0.993 0.989 0.982 k2值回归系数 0.941 0.924 0.908 0.887 0.865 0.840 0.813 0.783 表 2 17 min(37帧)成像时间图像数据拟合的不同区域11C-AC药代动力学参数与参考标准的差异
心肌节段 K1 k2 参考标准 17 min成像时间 RD (%) P值 参考标准 17 min成像时间 RD(%) P值 整体 0.762±0.115 0.788±0.116 3.59±1.99 <0.001 0.120±0.024 0.135±0.029 12.39±6.29 <0.001 LAD 0.771±0.117 0.801±0.119 3.93±1.98 <0.001 0.119±0.024 0.136±0.029 13.79±6.40 <0.001 RCA 0.776±0.120 0.795±0.119 2.84±1.89 <0.001 0.120±0.025 0.132±0.032 9.74±5.62 <0.001 LCX 0.744±0.126 0.769±0.125 3.65±2.25 <0.001 0.121±0.024 0.136±0.030 12.32±6.80 <0.001 LAD、RCA、LCX:同图 2;11C-AC:同图 1;RD:同图 4 -
[1] Lindner O, Sorensen J, Vogt J, et al. Cardiac efficiency and oxygen consumption measured with 11C-acetate PET after long-term cardiac resynchronization therapy[J]. J Nucl Med, 2006, 47: 378-383. [2] Sorensen J, Valind S, Andersson LG. Simultaneous quantification of myocardial perfusion, oxidative metabolism, cardiac efficiency and pump function at rest and during supine bicycle exercise using 11C-acetate PET - a pilot study[J]. Clin Physiol Funct Imaging, 2010, 30: 279-284. doi: 10.1111/j.1475-097X.2010.00938.x [3] Liu S, Lin X, Shi X, et al. Myocardial tissue and metabolism characterization in men with alcohol consumption by cardiovascular magnetic resonance and 11C-acetate PET/CT[J]. J Cardiovasc Magn R, 2020, 22: 23. doi: 10.1186/s12968-020-00614-2 [4] Ukkonen H, Knuuti J, Katoh C, et al. Use of [11 C] acetate and [15 O] O2 PET for the assessment of myocardial oxygen utilization in patients with chronic myocardial infarction[J]. Eur J Nucl Med, 2001, 28: 334-339. doi: 10.1007/s002590000444 [5] Nesterov SV, Turta O, Han C, et al. 11C acetate has excellent reproducibility for quantification of myocardial oxidative metabolism[J]. Eur Heart J Cardiovasc Imaging, 2015, 16: 500-506. doi: 10.1093/ehjci/jeu289 [6] Torizuka T, Nobezawa S, Momiki S, et al. Short dynamic FDG-PET imaging protocol for patients with lung cancer[J]. Eur J Nucl Med, 2000, 27: 1538-1542. doi: 10.1007/s002590000312 [7] Visser EP, Kienhorst L, Geus-Oei L, et al. Shortened dynamic FDG-PET protocol to determine the glucose metabolic rate in non-small cell lung carcinoma[C]. 2008 IEEE Nuclear Science Symposium Conference Record. IEEE, 2008: 4455-4458. [8] Monden T, Kudomi N, Sasakawa Y, et al. Shortening the duration of [18 F] FDG PET brain examination for diagnosis of brain glioma[J]. Mol Imaging Biol, 2011, 13: 754-758. doi: 10.1007/s11307-010-0384-z [9] Liu G, Yu H, Shi D, et al. Short-time total-body dynamic PET imaging performance in quantifying the kinetic metrics of 18F-FDG in healthy volunteers[J]. Eur J Nucl Med Mol Imaging, 2022, 49: 2493-2503. doi: 10.1007/s00259-021-05500-2 [10] Samimi R, Kamali-Asl A, Geramifar P, et al. Short-duration dynamic FDG PET imaging: optimization and clinical application[J]. Phys Med, 2020, 80: 193-200. doi: 10.1016/j.ejmp.2020.11.004 [11] Cerqueira MD, Weissman NJ, Dilsizian V, et al. Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart: a statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association[J]. Circulation, 2002, 105: 539-542. doi: 10.1161/hc0402.102975 [12] 何升级, 刘帅, 张辉, 等. 基于交替方向乘子法(ADMM)直接重建心脏11C-acetate PET动力学参数图[J]. 中国医学影像技术, 2022, 38: 758-763. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXX202205029.htm [13] Dimitrakopoulou-Strauss A, Strauss LG, Heichel T, et al. The role of quantitative (18)F-FDG PET studies for the differentiation of malignant and benign bone lesions[J]. J Nucl Med, 2002, 43: 510-518. [14] Dimitrakopoulou-Strauss A, Strauss LG, Schwarzbach M, et al. Dynamic PET 18F-FDG studies in patients with primary and recurrent soft-tissue sarcomas: impact on diagnosis and correlation with grading[J]. J Nucl Med, 2001, 42: 713-720. [15] Rusten E, Rodal J, Revheim ME, et al. Quantitative dynamic (18)FDG-PET and tracer kinetic analysis of soft tissue sarcomas[J]. Acta Oncol, 2013, 52: 1160-1167. doi: 10.3109/0284186X.2012.728713 [16] Strauss LG, Dimitrakopoulou-Strauss A, Koczan D, et al. 18F-FDG kinetics and gene expression in giant cell tumors[J]. J Nucl Med, 2004, 45: 1528-1535. [17] Dimitrakopoulou-Strauss A, Hohenberger P, Pan L, et al. Dynamic PET with FDG in patients with unresectable aggressive fibromatosis: regression-based parametric images and correlation to the FDG kinetics based on a 2-tissue compartment model[J]. Clin Nucl Med, 2012, 37: 943-948. doi: 10.1097/RLU.0b013e31825b1da4 [18] Humbert O, Lasserre M, Bertaut A, et al. Breast cancer blood flow and metabolism on dual-acquisition (18)F-FDG PET: correlation with tumor phenotype and neoadjuvant chemotherapy response[J]. J Nucl Med, 2018, 59: 1035-1041. doi: 10.2967/jnumed.117.203075 [19] Ye Q, Wu J, Lu Y, et al. Improved discrimination between benign and malignant LDCT screening-detected lung nodules with dynamic over static 18F-FDG PET as a function of injected dose[J]. Phys Med Biol, 2018, 63: 175015. doi: 10.1088/1361-6560/aad97f [20] Nishiyama Y, Yamamoto Y, Monden T, et al. Diagnostic value of kinetic analysis using dynamic FDG PET in immunocompetent patients with primary CNS lymphoma[J]. Eur J Nucl Med Mol Imaging, 2007, 34: 78-86. doi: 10.1007/s00259-006-0153-z -