[1]
|
Stoustrup P, Resnick CM, Abramowicz S, et al. Manage-ment of Orofacial Manifestations of Juvenile Idiopathic Arthritis: Interdisciplinary Consensus-Based Recommendations[J]. Arthritis Rheumatol, 2023, 75: 4-14. doi: 10.1002/art.42338 |
[2]
|
Malattia C, Tolend M, Mazzoni M, et al. Current status of MR imaging of juvenile idiopathic arthritis[J]. Best Pract Res Clin Rheumatol, 2020, 34: 101629. doi: 10.1016/j.berh.2020.101629 |
[3]
|
Combier A, Frantz C, Wipff J, et al. Risk stratification using anti-citrullinated peptide antibodies (ACPA) in polyarticular subtypes of juvenile idiopathic arthritis in adulthood[J]. Joint Bone Spine, 2022, 90: 105501. |
[4]
|
Hersh AO, Prahalad S. Immunogenetics of juvenile idiopa-thic arthritis: A comprehensive review[J]. J Autoimmun, 2015, 64: 113-124. doi: 10.1016/j.jaut.2015.08.002 |
[5]
|
Nziza N, Jeziorski E, Delpont M, et al. Synovial-Fluid miRNA Signature for Diagnosis of Juvenile Idiopathic Arthritis[J]. Cells, 2019, 8: 1521. doi: 10.3390/cells8121521 |
[6]
|
Brown RA, Henderlight M, Do T, et al. Neutrophils From Children With Systemic Juvenile Idiopathic Arthritis Exhibit Persistent Proinflammatory Activation Despite Long-Standing Clinically Inactive Disease[J]. Front Immunol, 2018, 9: 2995. doi: 10.3389/fimmu.2018.02995 |
[7]
|
Cimaz R, Maioli G, Calabrese G. Current and emerging biologics for the treatment of juvenile idiopathic arthritis[J]. Expert Opin Biol Ther, 2020, 20: 725-740. doi: 10.1080/14712598.2020.1733524 |
[8]
|
Jing W, Zhang X, Sun W, et al. CRISPR/CAS9-Mediated Genome Editing of miRNA-155 Inhibits Proinflammatory Cytokine Production by RAW264.7 Cells[J]. Biomed Res Int, 2015, 2015: 326042. |
[9]
|
Fattal E, Fay F. Nanomedicine-based delivery strategies for nucleic acid gene inhibitors in inflammatory diseases[J]. Adv Drug Deliv Rev, 2021, 175: 113809. doi: 10.1016/j.addr.2021.05.019 |
[10]
|
Verweyen EL, Schulert GS. Interfering with interferons: targeting the JAK-STAT pathway in complications of systemic juvenile idiopathic arthritis (SJIA)[J]. Rheumatology (Oxford), 2022, 61: 926-935. doi: 10.1093/rheumatology/keab673 |
[11]
|
Hochberg MC. Updating the American College of Rheumatology revised criteria for the classification of systemic lupus erythematosus[J]. Arthritis Rheum, 1997, 40: 1725. |
[12]
|
Petri M, Orbai AM, Alarcon GS, et al. Derivation and validation of the Systemic Lupus International Collaborating Clinics classification criteria for systemic lupus erythematosus[J]. Arthritis Rheum, 2012, 64: 2677-2686. doi: 10.1002/art.34473 |
[13]
|
Aringer M, Costenbader K, Daikh D, et al. 2019 European League Against Rheumatism/American College of Rheumatology Classification Criteria for Systemic Lupus Erythemato-sus[J]. Arthritis Rheumatol, 2019, 71: 1400-1412. doi: 10.1002/art.40930 |
[14]
|
Ma M, Hui-Yuen JS, Cerise JE, et al. Validation of the 2019 European League Against Rheumatism/American College of Rheumatology Criteria Compared to the 1997 American College of Rheumatology Criteria and the 2012 Systemic Lupus International Collaborating Clinics Criteria in Pediatric Systemic Lupus Erythematosus[J]. Arthritis Care Res (Hoboken), 2020, 72: 1597-1601. doi: 10.1002/acr.24057 |
[15]
|
Demirkaya E, Sahin S, Romano M, et al. New Horizons in the Genetic Etiology of Systemic Lupus Erythematosus and Lupus-Like Disease: Monogenic Lupus and Beyond[J]. J Clin Med, 2020, 9: 712. doi: 10.3390/jcm9030712 |
[16]
|
Batu ED, Kosukcu C, Taskiran E, et al. Whole Exome Sequencing in Early-onset Systemic Lupus Erythematosus[J]. J Rheumatol, 2018, 45: 1671-1679. doi: 10.3899/jrheum.171358 |
[17]
|
He Y, Gallman AE, Xie C, et al. P2RY8 variants in lupus patients uncover a role for the receptor in immunological tolerance[J]. J Exp Med, 2022, 219: e20211004. doi: 10.1084/jem.20211004 |
[18]
|
Bentham J, Morris DL, Graham DSC, et al. Genetic association analyses implicate aberrant regulation of innate and adaptive immunity genes in the pathogenesis of systemic lupus erythematosus[J]. Nat Genet, 2015, 47: 1457-1464. doi: 10.1038/ng.3434 |
[19]
|
Julia A, Lopez-Longo FJ, Perez Venegas JJ, et al. Genome-wide association study meta-analysis identifies five new loci for systemic lupus erythematosus[J]. Arthritis Res Ther, 2018, 20: 100. doi: 10.1186/s13075-018-1604-1 |
[20]
|
Martinez-Bueno M, Alarcon-Riquelme ME. Exploring Impact of Rare Variation in Systemic Lupus Erythematosus by a Genome Wide Imputation Approach[J]. Front Immunol, 2019, 10: 258. doi: 10.3389/fimmu.2019.00258 |
[21]
|
Omarjee O, Picard C, Frachette C, et al. Monogenic lupus: Dissecting heterogeneity[J]. Autoimmun Rev, 2019, 18: 102361. doi: 10.1016/j.autrev.2019.102361 |
[22]
|
Brown GJ, Canete PF, Wang H, et al. TLR7 gain-of-function genetic variation causes human lupus[J]. Nature, 2022, 605: 349-356. doi: 10.1038/s41586-022-04642-z |
[23]
|
Xu L, Zhao J, Sun Q, et al. Loss-of-function variants in SAT1 cause X-linked childhood-onset systemic lupus erythematosus[J]. Ann Rheum Dis, 2022, 81: 1712-1721. doi: 10.1136/annrheumdis-2022-eular.4424 |
[24]
|
Wang TY, Wang YF, Zhang Y, et al. Identification of Regulatory Modules That Stratify Lupus Disease Mechanism through Integrating Multi-Omics Data[J]. Mol Ther Nucleic Acids, 2020, 19: 318-329. doi: 10.1016/j.omtn.2019.11.019 |
[25]
|
Der E, Suryawanshi H, Morozov P, et al. Tubular cell and keratinocyte single-cell transcriptomics applied to lupus nephritis reveal type I IFN and fibrosis relevant pathways[J]. Nat Immunol, 2019, 20: 915-927. doi: 10.1038/s41590-019-0386-1 |
[26]
|
Arazi A, Rao DA, Berthier CC, et al. The immune cell landscape in kidneys of patients with lupus nephritis[J]. Nat Immunol, 2019, 20: 902-914. doi: 10.1038/s41590-019-0398-x |
[27]
|
Nehar-Belaid D, Hong S, Marches R, et al. Mapping systemic lupus erythematosus heterogeneity at the single-cell level[J]. Nat Immunol, 2020, 21: 1094-1106. doi: 10.1038/s41590-020-0743-0 |
[28]
|
van Vollenhoven RF, Petri MA, Cervera R, et al. Belimu-mab in the treatment of systemic lupus erythematosus: high disease activity predictors of response[J]. Ann Rheum Dis, 2012, 71: 1343-1349. doi: 10.1136/annrheumdis-2011-200937 |
[29]
|
Brunner HI, Abud-Mendoza C, Viola DO, et al. Safety and efficacy of intravenous belimumab in children with systemic lupus erythematosus: results from a randomised, placebo-controlled trial[J]. Ann Rheum Dis, 2020, 79: 1340-1348. doi: 10.1136/annrheumdis-2020-217101 |
[30]
|
Furie R, Nicholls K, Cheng TT, et al. Efficacy and safety of abatacept in lupus nephritis: a twelve-month, randomized, double-blind study[J]. Arthritis Rheumatol, 2014, 66: 379-389. |
[31]
|
Group AT. Treatment of lupus nephritis with abatacept: the Abatacept and Cyclophosphamide Combination Efficacy and Safety Study[J]. Arthritis Rheumatol, 2014, 66: 3096-3104. doi: 10.1002/art.38790 |
[32]
|
Goldberg A, Geppert T, Schiopu E, et al. Dose-escalation of human anti-interferon-alpha receptor monoclonal antibody MEDI-546 in subjects with systemic sclerosis: a phase 1, multicenter, open label study[J]. Arthritis Res Ther, 2014, 16: R57. doi: 10.1186/ar4492 |
[33]
|
Kalunian KC, Merrill JT, Maciuca R, et al. A Phase Ⅱ study of the efficacy and safety of rontalizumab (rhuMAb interferon-alpha) in patients with systemic lupus erythematosus (ROSE)[J]. Ann Rheum Dis, 2016, 75: 196-202. doi: 10.1136/annrheumdis-2014-206090 |