Clinical Phenotype and Immunological Characteristics of A Patient with De Novo Heterozygous Mutation of PTEN
-
摘要:
目的 探讨一例PTEN杂合突变患儿的临床表型及免疫特征,丰富PTEN突变相关临床表型谱。 方法 收集患儿门诊及住院期间的病史资料、生化检查及影像学检查结果,抽取外周静脉血进行医学全外显子组综合检测,Sanger测序验证患儿及其父母PTEN基因突变位点,采用流式细胞术进行T细胞PI3K/Akt/mTOR通路磷酸化水平及T细胞亚群与其耗竭相关表面分子检测,采用蛋白质印迹法检测外周血单个核细胞PTEN蛋白表达水平,健康对照为患儿父亲。 结果 患儿以大头畸形(头围>P99)、疣状表皮痣、精神运动发育迟缓、学语延迟为主要临床表现,PTEN基因(NM_000314.8) c.388C>T(p.R130X)新生杂合突变,PTEN蛋白表达减少,血清IgA水平稍低(0.177 g/L),精细免疫分型CD4+终末分化效应记忆T细胞、CD8+终末分化效应记忆T细胞、过渡性B细胞比例及绝对数均增加,但T细胞PI3K/Akt/mTOR通路磷酸化水平正常。患儿以PTEN错构瘤综合征相关表型为主要表现,无明显PI3Kδ过度活化综合征样表型。 结论 该患儿PTEN基因的突变位点为国内首例,有助于丰富临床医生对该疾病的认识,提高诊治水平。 -
关键词:
- PTEN错构瘤综合征 /
- 基因 /
- 突变
Abstract:Objective To analyze the clinical phenotype and immunological characteristics of a patient with heterozygous mutation of PTEN and enrich the clinical phenotypes related to PTEN mutation. Methods A retrospective analysis of the clinical data of a patient with PTEN heterozygous mutation admitted to the Children's Hospital of Chongqing Medical University was conducted. Peripheral venous blood was extracted for medical whole-exome comprehensive detection, and the PTEN mutation was confirmed by Sanger sequencing. Flow cytometry was applied to detect the lymphocyte subsets and immunophenotype of the patient. The expression level of PTEN protein in peripheral blood mononuclear cells was detected by Western blot, and the healthy control was the patient's father. Results The patient was a boy of 1 year and 4 months, with macrocephaly (head circumference > P99), verrucous epidermal nevus, delayed psychomotor development and delayed language learning as the main manifestations. Gene sequencing revealed a de novo heterozygous mutation of PTEN c.388C > T(p.R130X). Reduced expression of PTEN protein was observed in peripheral blood mononuclear cells of the patient. For immunological characteristics, the IgA level mildly decreased(0.177 g/L), with increased counts of terminally differentiated memory CD4+ T cells, terminally differentiated memory CD8+ T cells, transitional B cells, but phosphorylation of PI3K/Akt/mTOR pathway in T cells was normal. The patient mainly manifested as PTEN hamartoma tumor syndrome related phenotype, without any classic activated phosphatidylinositol 3-kinase δ syndrome-like phenotype. Conclusions This patient has a de novo heterozygous mutation of PTEN c.388C > T(p.R130X), which has not been previously reported in China. This article could enrich clinicians' understanding of the disease and assist clinical diagnosis and treatment. -
Key words:
- PTEN hamartoma tumor syndrome /
- gene /
- mutation
作者贡献:邱璐瑶负责收集临床资料及撰写论文;唐文静、王艳平负责协助收集临床资料;杨露、吕格、陈俊杰、孙淦、周丽娜负责协助完善实验室检查;安云飞、张志勇、唐雪梅、赵晓东、杜鸿强负责指导研究思路;赵晓东、杜鸿强负责指导论文撰写及修订。利益冲突:所有作者均声明不存在利益冲突注:本研究发表已征得患儿父母知情同意。 -
表 1 患儿精细免疫分型结果(×109/L)
免疫细胞类型 相对数(参考范围) 绝对数(参考范围) T细胞 0.602(0.539~0.729) 3.397(1.794~4.247) CD8+T细胞 0.212(0.190~0.325) 1.193(0.580~1.735) 初始CD8+T细胞 0.488(0.368~0.832) 0.582(0.356~1.095) CD8+ TEMRA 0.427(0.008~0.330) 0.510(0.009~0.440) 中央记忆CD8+T细胞 0.054(0.052~0.317) 0.064(0.056~0.406) 效应性记忆CD8+T细胞 0.031(0.007~0.112) 0.037(0.006~0.145) CD4+T细胞 0.369(0.241~0.425) 0.208(0.902~2.253) 初始CD4+T细胞 0.749(0.461~0.844) 1.560(0.472~1.760) CD4+ TEMRA 0.014(0.000~0.013) 0.030(0.000~0.022) 中央记忆CD4+T细胞 0.220(0.139~0.481) 0.457(0.212~0.735) 效应性记忆CD4+T细胞 0.017(0.009~0.064) 0.035(0.015~0.087) αβ+双阴T细胞 0.004(0.004~0.018) 0.013(0.009~0.057) γδT细胞 0.022(0.049~0.180) 0.076(0.114~0.539) B细胞 0.231(0.132~0.264) 1.300(0.461~1.456) 记忆性B细胞 0.065(0.030~0.142) 0.085(0.026~0.124) 初始B细胞 0.831(0.655~0.866) 1.080(0.323~1.089) 过渡性B细胞 0.286(0.052~0.172) 0.372(0.035~0.172) 浆母细胞 0.063(0.005~0.071) 0.082(0.004~0.063) NK细胞 0.167(0.072~0.209) 0.940(0.270~1.053) CD4+T/CD8+T细胞 1.740(0.900~2.130) - TEMRA:终末分化效应记忆T细胞; NK细胞:自然杀伤细胞 -
[1] Pilarski R. PTEN Hamartoma Tumor Syndrome: A Clinical Overview[J]. Cancers (Basel), 2019, 11: 844. doi: 10.3390/cancers11060844 [2] Celebi JT, Tsou HC, Chen FF, et al. Phenotypic findings of Cowden syndrome and Bannayan-Zonana syndrome in a family associated with a single germline mutation in PTEN[J]. J Med Genet, 1999, 36: 360-364. [3] Tsujita Y, Mitsui-Sekinaka K, Imai K, et al. Phosphatase and tensin homolog (PTEN) mutation can cause activated phosphatidylinositol 3-kinase δ syndrome-like immunodeficiency[J]. J Allergy Clin Immunol, 2016, 138: 1672-1680. doi: 10.1016/j.jaci.2016.03.055 [4] Ding Y, Zhou L, Xia Y, et al. Reference values for peripheral blood lymphocyte subsets of healthy children in China[J]. J Allergy Clin Immunol, 2018, 142: 970-973. doi: 10.1016/j.jaci.2018.04.022 [5] Pilarski R, Burt R, Kohlman W, et al. Cowden syndrome and the PTEN hamartoma tumor syndrome: systematic review and revised diagnostic criteria[J]. J Natl Cancer Inst, 2013, 105: 1607-1616. doi: 10.1093/jnci/djt277 [6] Daly MB, Pilarski R, Berry M, et al. NCCN Guidelines Insights: Genetic/Familial High-Risk Assessment: Breast and Ovarian, Version 2.2017[J]. J Natl Compr Canc Netw, 2017, 15: 9-20. doi: 10.6004/jnccn.2017.0003 [7] Busa T, Milh M, Degardin N, et al. Clinical presentation of PTEN mutations in childhood in the absence of family history of Cowden syndrome[J]. Eur J Paediatr Neurol, 2015, 19: 188-192. doi: 10.1016/j.ejpn.2014.11.012 [8] Coulter TI, Chandra A, Bacon CM, et al. Clinical spectrum and features of activated phosphoinositide 3-kinase δ syndrome: A large patient cohort study[J]. J Allergy Clin Immunol, 2017, 139: 597-606. doi: 10.1016/j.jaci.2016.06.021 [9] Larbi A, Fulop T. From "truly naïve" to "exhausted senescent" T cells: when markers predict functionality[J]. Cytometry A, 2014, 85: 25-35. doi: 10.1002/cyto.a.22351 [10] Hand TW, Cui W, Jung YW, et al. Differential effects of STAT5 and PI3K/AKT signaling on effector and memory CD8 T-cell survival[J]. Proc Natl Acad Sci USA, 2010, 107: 16601-16606. doi: 10.1073/pnas.1003457107 [11] Zhou Y, Zhang Y, Han J, et al. Transitional B cells involved in autoimmunity and their impact on neuroimmunological diseases[J]. J Transl Med, 2020, 18: 131. doi: 10.1186/s12967-020-02289-w [12] Leslie NR, Longy M. Inherited PTEN mutations and the prediction of phenotype[J]. Semin Cell Dev Biol, 2016, 52: 30-38. doi: 10.1016/j.semcdb.2016.01.030 [13] Chen L, Guo D. The functions of tumor suppressor PTEN in innate and adaptive immunity[J]. Cell Mol Immunol, 2017, 14: 581-589. doi: 10.1038/cmi.2017.30 [14] Nelen MR, van Staveren WC, Peeters EA, et al. Germline mutations in the PTEN/MMAC1 gene in patients with Cowden disease[J]. Hum Mol Genet, 1997, 6: 1383-1387. doi: 10.1093/hmg/6.8.1383 [15] Mester J, Eng C. Cowden syndrome: recognizing and managing a not-so-rare hereditary cancer syndrome[J]. J Surg Oncol, 2015, 111: 125-130. doi: 10.1002/jso.23735 [16] Daly MB, Pilarski R, Yurgelun MB, et al. NCCN Guide-lines Insights: Genetic/Familial High-Risk Assessment: Breast, Ovarian, and Pancreatic, Version 1.2020[J]. J Natl Compr Canc Netw, 2020, 18: 380-391. doi: 10.6004/jnccn.2020.0017 [17] Podsypanina K, Lee RT, Politis C, et al. An inhibitor of mTOR reduces neoplasia and normalizes p70/S6 kinase activity in Pten+/- mice[J]. Proc Natl Acad Sci USA, 2001, 98: 10320-10325. doi: 10.1073/pnas.171060098 [18] Squarize CH, Castilho RM, Gutkind JS. Chemoprevention and treatment of experimental Cowden's disease by mTOR inhibition with rapamycin[J]. Cancer Res, 2008, 68: 7066-7072. doi: 10.1158/0008-5472.CAN-08-0922 [19] Ross-Innes CS, Becq J, Warren A, et al. Whole-genome sequencing provides new insights into the clonal architecture of Barrett's esophagus and esophageal adenocarcinoma[J]. Nat Genet, 2015, 47: 1038-1046. doi: 10.1038/ng.3357 [20] Lagergren J, Lagergren P. Recent developments in esophageal adenocarcinoma[J]. CA Cancer J Clin, 2013, 63: 232-248. doi: 10.3322/caac.21185 -