[1]
|
Yuan Q, Yuan Y, Zheng Y, et al. Anti-cerebral ischemia reperfusion injury of polysaccharides: A review of the mechanisms[J]. Biomed Pharmacother, 2021, 137: 111303. http://doc.paperpass.com/foreign/rgArti2021344920020.html |
[2]
|
中华医学会急诊医学分会复苏学组, 中国医药教育协会急诊专业委员会, 成人心脏骤停后综合征诊断和治疗中国急诊专家共识组. 成人心脏骤停后综合征诊断和治疗中国急诊专家共识[J]. 中国急救医学, 2021, 41: 578-587. doi: 10.3969/j.issn.1002-1949.2021.07.009 |
[3]
|
Yang B, Chen Y, Shi J. Reactive Oxygen Species (ROS)- Based Nanomedicine[J]. Chem Rev, 2019, 119: 4881-4985. doi: 10.1021/acs.chemrev.8b00626 |
[4]
|
Dryden M. Reactive oxygen species: a novel antimicrobial[J]. Int J Antimicrob Agents, 2018, 51: 299-303. doi: 10.1016/j.ijantimicag.2017.08.029 |
[5]
|
Sanderson TH, Reynolds CA, Kumar R, et al. Molecular mechanisms of ischemia-reperfusion injury in brain: pivotal role of the mitochondrial membrane potential in reactive oxygen species generation[J]. Mol Neurobiol, 2013, 47: 9-23. http://pubmed.ncbi.nlm.nih.gov/23011809/ |
[6]
|
Wu MY, Yiang GT, Liao WT, et al. Current Mechanistic Concepts in Ischemia and Reperfusion Injury[J]. Cell Physiol Biochem, 2018, 46: 1650-1667. doi: 10.1159/000489241 |
[7]
|
侯昆, 戴海龙, 肖志成. 脑缺血再灌注损伤研究进展[J]. 中国心血管病研究, 2016, 14: 10-14. doi: 10.3969/j.issn.1672-5301.2016.01.003 |
[8]
|
Mukherjee A, Sarkar S, Jana S, et al. Neuro-protective role of nanocapsulated curcumin against cerebral ischemia-reperfusion induced oxidative injury[J]. Brain Res, 2019, 1704: 164-173. doi: 10.1016/j.brainres.2018.10.016 |
[9]
|
Li S, Jiang D, Rosenkrans ZT, et al. Aptamer-Conjugated Framework Nucleic Acids for the Repair of Cerebral Ischemia-Reperfusion Injury[J]. Nano Lett, 2019, 19: 7334-7341. doi: 10.1021/acs.nanolett.9b02958 |
[10]
|
Wang Y, Luo J, Li SY. Nano-Curcumin Simultaneously Protects the Blood-Brain Barrier and Reduces M1 Microglial Activation During Cerebral Ischemia-Reperfusion Injury[J]. ACS Appl Mater Interfaces, 2019, 11: 3763-3770. doi: 10.1021/acsami.8b20594 |
[11]
|
Gülke E, Gelderblom M, Magnus T. Danger signals in stroke and their role on microglia activation after ischemia[J]. Ther Adv Neurol Disord, 2018, 11: 1756286418774254. http://doc.paperpass.com/foreign/rgArti20185152635.html |
[12]
|
Gesuete R, Kohama SG, Stenzel-Poore MP. Toll-like receptors and ischemic brain injury[J]. J Neuropathol Exp Neurol, 2014, 73: 378-386. doi: 10.1097/NEN.0000000000000068 |
[13]
|
Jin R, Yang G, Li G. Inflammatory mechanisms in ischemic stroke: role of inflammatory cells[J]. J Leukoc Biol, 2010, 87: 779-789. doi: 10.1189/jlb.1109766 |
[14]
|
Sinning C, Westermann D, Clemmensen P. Oxidative stress in ischemia and reperfusion: current concepts, novel ideas and future perspectives[J]. Biomark Med, 2017, 11: 11031-11040. doi: 10.2217/bmm-2017-0110 |
[15]
|
Kalogeris T, Baines CP, Krenz M, et al. Cell biology of ischemia/reperfusion injury[J]. Int Rev Cell Mol Biol, 2012, 298: 229-317. http://www.ncbi.nlm.nih.gov/pmc/picrender.fcgi?artid=PMC3904795&blobtype=pdf |
[16]
|
郎丰山, 黄云霞, 薛云, 等. 脑缺血再灌注损伤病理生理机制研究进展[J]. 食品与药品, 2018, 20: 312-316. doi: 10.3969/j.issn.1672-979X.2018.04.020 |
[17]
|
Wang Y, Hong F, Yang S. Roles of Nitric Oxide in Brain Ischemia and Reperfusion[J]. Int J Mol Sci, 2022, 23: 4243. doi: 10.3390/ijms23084243 |
[18]
|
Ferrer-Sueta G, Campolo N, Trujillo M, et al. Bioche-mistry of Peroxynitrite and Protein Tyrosine Nitration[J]. Chem Rev, 2018, 118: 1338-1408. doi: 10.1021/acs.chemrev.7b00568 |
[19]
|
Mahrouf-Yorgov M, Augeul L, Da Silva CC, et al. Mesenchymal stem cells sense mitochondria released from damaged cells as danger signals to activate their rescue properties[J]. Cell Death Differ, 2017, 24: 1224-1238. doi: 10.1038/cdd.2017.51 |
[20]
|
You J, Feng L, Xin M, et al. Cerebral Ischemic Postconditioning Plays a Neuroprotective Role through Regulation of Central and Peripheral Glutamate[J]. Biomed Res Int, 2018, 2018: 6316059. http://www.onacademic.com/detail/journal_1000040477150510_5979.html |
[21]
|
Fang Y, Jiang D, Wang Y, et al. Neuroprotection of rhGLP-1 in diabetic rats with cerebral ischemia/reperfusion injury via regulation of oxidative stress, EAAT2, and apoptosis[J]. Drug Dev Res, 2018, 79: 249-259. doi: 10.1002/ddr.21439 |
[22]
|
Amantea D, Bagetta G. Excitatory and inhibitory amino acid neurotransmitters in stroke: from neurotoxicity to ischemic tolerance[J]. Curr Opin Pharmacol, 2017, 35: 111-119. doi: 10.1016/j.coph.2017.07.014 |
[23]
|
Ding DC, Shyu WC, Lin SZ. Mesenchymal stem cells[J]. Cell Transplant, 2011, 20: 5-14. doi: 10.3727/096368910X |
[24]
|
Galipeau J, Sensébé L. Mesenchymal Stromal Cells: Clinical Challenges and Therapeutic Opportunities[J]. Cell Stem Cell, 2018, 22: 824-833. doi: 10.1016/j.stem.2018.05.004 |
[25]
|
Hoang DM, Pham PT, Bach TQ, et al. Stem cell-based therapy for human diseases[J]. Signal Transduct Target Ther, 2022, 7: 272. doi: 10.1038/s41392-022-01134-4 |
[26]
|
Salehi MS, Pandamooz S, Safari A, et al. Epidermal neural crest stem cell transplantation as a promising therapeutic strategy for ischemic stroke[J]. CNS Neurosci Ther, 2020, 26: 670-681. doi: 10.1111/cns.13370 |
[27]
|
Levy ML, Crawford JR, Dib N, et al. Phase Ⅰ/Ⅱ Study of Safety and Preliminary Efficacy of Intravenous Allogeneic Mesenchymal Stem Cells in Chronic Stroke[J]. Stroke, 2019, 50: 2835-2841. doi: 10.1161/STROKEAHA.119.026318 |
[28]
|
Andrzejwska A, Dabrowska S, Lukomska B, et al. Mesenchymal Stem Cells for Neurological Disorders[J]. Adv Sci (Weinh), 2021, 8: 2002944. doi: 10.1002/advs.202002944 |
[29]
|
Abbasi-Kangevari M, Ghamari SH, Safaeinejad F, et al. Potential Therapeutic Features of Human Amniotic Mesenchymal Stem Cells in Multiple Sclerosis: Immunomodula-tion, Inflammation Suppression, Angiogenesis Promotion, Oxidative Stress Inhibition, Neurogenesis Induction, MMPs Regulation, and Remyelination Stimulation[J]. Front Immunol, 2019, 10: 238. doi: 10.3389/fimmu.2019.00238 |
[30]
|
Wang F, Tang H, Zhu J, et al. Transplanting Mesen-chymal Stem Cells for Treatment of Ischemic Stroke[J]. Cell Transplant, 2018, 27: 1825-1834. doi: 10.1177/0963689718795424 |
[31]
|
Dabrowska S, Andrzejewska A, Lukomska B, et al. Neuroinflammation as a target for treatment of stroke using mesenchymal stem cells and extracellular vesicles[J]. J Neuroinflammation, 2019, 16: 178. doi: 10.1186/s12974-019-1571-8 |
[32]
|
Zhao LR, Duan WM, Reyes M, et al. Human bone marrow stem cells exhibit neural phenotypes and ameliorate neurological deficits after grafting into the ischemic brain of rats[J]. Exp Neurol, 2002, 174: 11-20. doi: 10.1006/exnr.2001.7853 |
[33]
|
Bronckaers A, Hilkens P, Martens W, et al. Mesenchymal stem/stromal cells as a pharmacological and therapeutic approach to accelerate angiogenesis[J]. Pharmacol Ther, 2014, 143: 181-196. doi: 10.1016/j.pharmthera.2014.02.013 |
[34]
|
Boese AC, Le QE, Pham D, et al. Neural stem cell therapy for subacute and chronic ischemic stroke[J]. Stem Cell Res Ther, 2018, 9: 154. doi: 10.1186/s13287-018-0913-2 |
[35]
|
Bagheri-Mohammadi S. Protective effects of mesenchymal stem cells on ischemic brain injury: therapeutic perspectives of regenerative medicine[J]. Cell Tissue Bank, 2021, 22: 249-262. doi: 10.1007/s10561-020-09885-6 |
[36]
|
Beneedek A, Cernica D, Mester A, et al. Modern Concepts in Regenerative Therapy for Ischemic Stroke: From Stem Cells for Promoting Angiogenesis to 3D-Bioprinted Scaffolds Customized via Carotid Shear Stress Analysis[J]. Int J Mol Sci, 2019, 20: 2574. doi: 10.3390/ijms20102574 |
[37]
|
Jeong CH, Kim SM, Lim JY, et al. Mesenchymal stem cells expressing brain-derived neurotrophic factor enhance endogenous neurogenesis in an ischemic stroke model[J]. Biomed Res Int, 2014, 2014: 129145. http://downloads.hindawi.com/journals/bmri/2014/129145.pdf |
[38]
|
Liu J, Huang Y, He J, et al. Olfactory Mucosa Mesenchymal Stem Cells Ameliorate Cerebral Ischemic/Reperfusion Injury Through Modulation of UBIAD1 Expression[J]. Front Cell Neurosci, 2020, 14: 580206. doi: 10.3389/fncel.2020.580206 |
[39]
|
Cao D, Qiao H, He D, et al. Mesenchymal stem cells inhibited the inflammation and oxidative stress in LPS-activated microglial cells through AMPK pathway[J]. J Neural Transm (Vienna), 2019, 126: 1589-1597. doi: 10.1007/s00702-019-02102-z |
[40]
|
Cunningham CJ, Redondo-Castro E, Allan SM. The therapeutic potential of the mesenchymal stem cell secretome in ischaemic stroke[J]. J Cereb Blood Flow Metab, 2018, 38: 1276-1292. doi: 10.1177/0271678X18776802 |
[41]
|
Huang P, Gebhart N, Richelson E, et al. Mechanism of mesenchymal stem cell-induced neuron recovery and anti-inflammation[J]. Cytotherapy, 2014, 16: 1336-1344. doi: 10.1016/j.jcyt.2014.05.007 |
[42]
|
Yoo SW, Chang DY, Lee HS, et al. Immune following suppression mesenchymal stem cell transplantation in the ischemic brain is mediated by TGF-β[J]. Neurobiol Dis, 2013, 58: 249-257. doi: 10.1016/j.nbd.2013.06.001 |
[43]
|
Redondo-Castro E, Cunningham C, Miller J, et al. Interleukin-1 primes human mesenchymal stem cells towards an anti-inflammatory and pro-trophic phenotype in vitro[J]. Stem Cell Res Ther, 2017, 8: 79. doi: 10.1186/s13287-017-0531-4 |
[44]
|
尚羽, 李康睿, 叶民, 等. 骨髓间充质干细胞对大鼠脑缺血再灌注损伤后神经元凋亡及炎症的影响[J]. 遵义医科大学学报, 2022, 45: 289-295. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYYB202203003.htm |
[45]
|
Yu Y, Wang D, Li H, et al. Mesenchymal stem cells derived from induced pluripotent stem cells play a key role in immunomodulation during cardiopulmonary resuscitation[J]. Brain Res, 2019, 1720: 146293. doi: 10.1016/j.brainres.2019.06.012 |
[46]
|
Li LH, Tian XR, Jiang Z, et al. The Golgi Apparatus: Panel Point of Cytosolic Ca(2+) Regulation[J]. Neurosignals, 2013, 21: 272-284. doi: 10.1159/000350471 |
[47]
|
He J, Liu J, Huang Y, et al. Olfactory Mucosa Mesenchymal Stem Cells Alleviate Cerebral Ischemia/Reperfusion Injury Via Golgi Apparatus Secretory Pathway Ca2+-ATPase Isoform1[J]. Front Cell Dev Biol, 2020, 8: 586541. doi: 10.3389/fcell.2020.586541 |
[48]
|
Turovsky EA, Golovicheva VV, Varlamvoa EG, et al. Mesenchymal stromal cell-derived extracellular vesicles afford neuroprotection by modulating PI3K/AKT pathway and calcium oscillations[J]. Int J Biol Sci, 2022, 18: 5345-5368. doi: 10.7150/ijbs.73747 |