留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

间充质干细胞对脑缺血性再灌注损伤的保护作用

汪杰 李湘民

汪杰, 李湘民. 间充质干细胞对脑缺血性再灌注损伤的保护作用[J]. 协和医学杂志, 2023, 14(3): 472-477. doi: 10.12290/xhyxzz.2022-0734
引用本文: 汪杰, 李湘民. 间充质干细胞对脑缺血性再灌注损伤的保护作用[J]. 协和医学杂志, 2023, 14(3): 472-477. doi: 10.12290/xhyxzz.2022-0734
WANG Jie, LI Xiangmin. Protective Effect of Mesenchymal Stem Cells on Cerebral Ischemic Reperfusion Injury[J]. Medical Journal of Peking Union Medical College Hospital, 2023, 14(3): 472-477. doi: 10.12290/xhyxzz.2022-0734
Citation: WANG Jie, LI Xiangmin. Protective Effect of Mesenchymal Stem Cells on Cerebral Ischemic Reperfusion Injury[J]. Medical Journal of Peking Union Medical College Hospital, 2023, 14(3): 472-477. doi: 10.12290/xhyxzz.2022-0734

间充质干细胞对脑缺血性再灌注损伤的保护作用

doi: 10.12290/xhyxzz.2022-0734
基金项目: 

湖南省自然科学基金 2022JJ30938

详细信息
    通讯作者:

    李湘民, E-mail: lxm8229@csu.edu.cn

  • 中图分类号: R743;R459.7

Protective Effect of Mesenchymal Stem Cells on Cerebral Ischemic Reperfusion Injury

Funds: 

Natural Science Foundation of Hunan Province 2022JJ30938

More Information
  • 摘要: 脑缺血再灌注损伤是神经系统疾病患者预后欠佳的主要原因之一, 也是目前导致患者瘫痪的重要原因, 多见于心脏骤停、脑出血、脑梗死、脑卒中等疾病, 其经典的病理生理机制主要包括氧化应激、炎症反应、钙超载、一氧化氮损伤以及兴奋性氨基酸毒性作用等。随着医疗技术的发展, 脑缺血再灌注损伤的治疗方案不断完善, 然而更加精准有效的治疗方案仍在不断探索中。间充质干细胞(mesenchymal stem cells, MSCs)是一种多能干细胞, 存在于骨髓、肌肉、脂肪等组织器官中。近年来, MSCs凭借其强大的分化能力、分泌能力以及良好的免疫相容性, 被用于探索治疗多种疾病。本文从病理生理机制出发, 阐述MSCs在脑缺血再灌注损伤中的保护作用, 以期为脑缺血再灌注损伤的治疗提供新思路。
    作者贡献:汪杰、李湘民负责论文构思和框架构建;汪杰负责文献检索及论文撰写;李湘民负责论文指导及修订。
    利益冲突:所有作者均声明不存在利益冲突
  • [1] Yuan Q, Yuan Y, Zheng Y, et al. Anti-cerebral ischemia reperfusion injury of polysaccharides: A review of the mechanisms[J]. Biomed Pharmacother, 2021, 137: 111303. http://doc.paperpass.com/foreign/rgArti2021344920020.html
    [2] 中华医学会急诊医学分会复苏学组, 中国医药教育协会急诊专业委员会, 成人心脏骤停后综合征诊断和治疗中国急诊专家共识组. 成人心脏骤停后综合征诊断和治疗中国急诊专家共识[J]. 中国急救医学, 2021, 41: 578-587. doi:  10.3969/j.issn.1002-1949.2021.07.009
    [3] Yang B, Chen Y, Shi J. Reactive Oxygen Species (ROS)- Based Nanomedicine[J]. Chem Rev, 2019, 119: 4881-4985. doi:  10.1021/acs.chemrev.8b00626
    [4] Dryden M. Reactive oxygen species: a novel antimicrobial[J]. Int J Antimicrob Agents, 2018, 51: 299-303. doi:  10.1016/j.ijantimicag.2017.08.029
    [5] Sanderson TH, Reynolds CA, Kumar R, et al. Molecular mechanisms of ischemia-reperfusion injury in brain: pivotal role of the mitochondrial membrane potential in reactive oxygen species generation[J]. Mol Neurobiol, 2013, 47: 9-23. http://pubmed.ncbi.nlm.nih.gov/23011809/
    [6] Wu MY, Yiang GT, Liao WT, et al. Current Mechanistic Concepts in Ischemia and Reperfusion Injury[J]. Cell Physiol Biochem, 2018, 46: 1650-1667. doi:  10.1159/000489241
    [7] 侯昆, 戴海龙, 肖志成. 脑缺血再灌注损伤研究进展[J]. 中国心血管病研究, 2016, 14: 10-14. doi:  10.3969/j.issn.1672-5301.2016.01.003
    [8] Mukherjee A, Sarkar S, Jana S, et al. Neuro-protective role of nanocapsulated curcumin against cerebral ischemia-reperfusion induced oxidative injury[J]. Brain Res, 2019, 1704: 164-173. doi:  10.1016/j.brainres.2018.10.016
    [9] Li S, Jiang D, Rosenkrans ZT, et al. Aptamer-Conjugated Framework Nucleic Acids for the Repair of Cerebral Ischemia-Reperfusion Injury[J]. Nano Lett, 2019, 19: 7334-7341. doi:  10.1021/acs.nanolett.9b02958
    [10] Wang Y, Luo J, Li SY. Nano-Curcumin Simultaneously Protects the Blood-Brain Barrier and Reduces M1 Microglial Activation During Cerebral Ischemia-Reperfusion Injury[J]. ACS Appl Mater Interfaces, 2019, 11: 3763-3770. doi:  10.1021/acsami.8b20594
    [11] Gülke E, Gelderblom M, Magnus T. Danger signals in stroke and their role on microglia activation after ischemia[J]. Ther Adv Neurol Disord, 2018, 11: 1756286418774254. http://doc.paperpass.com/foreign/rgArti20185152635.html
    [12] Gesuete R, Kohama SG, Stenzel-Poore MP. Toll-like receptors and ischemic brain injury[J]. J Neuropathol Exp Neurol, 2014, 73: 378-386. doi:  10.1097/NEN.0000000000000068
    [13] Jin R, Yang G, Li G. Inflammatory mechanisms in ischemic stroke: role of inflammatory cells[J]. J Leukoc Biol, 2010, 87: 779-789. doi:  10.1189/jlb.1109766
    [14] Sinning C, Westermann D, Clemmensen P. Oxidative stress in ischemia and reperfusion: current concepts, novel ideas and future perspectives[J]. Biomark Med, 2017, 11: 11031-11040. doi:  10.2217/bmm-2017-0110
    [15] Kalogeris T, Baines CP, Krenz M, et al. Cell biology of ischemia/reperfusion injury[J]. Int Rev Cell Mol Biol, 2012, 298: 229-317. http://www.ncbi.nlm.nih.gov/pmc/picrender.fcgi?artid=PMC3904795&blobtype=pdf
    [16] 郎丰山, 黄云霞, 薛云, 等. 脑缺血再灌注损伤病理生理机制研究进展[J]. 食品与药品, 2018, 20: 312-316. doi:  10.3969/j.issn.1672-979X.2018.04.020
    [17] Wang Y, Hong F, Yang S. Roles of Nitric Oxide in Brain Ischemia and Reperfusion[J]. Int J Mol Sci, 2022, 23: 4243. doi:  10.3390/ijms23084243
    [18] Ferrer-Sueta G, Campolo N, Trujillo M, et al. Bioche-mistry of Peroxynitrite and Protein Tyrosine Nitration[J]. Chem Rev, 2018, 118: 1338-1408. doi:  10.1021/acs.chemrev.7b00568
    [19] Mahrouf-Yorgov M, Augeul L, Da Silva CC, et al. Mesenchymal stem cells sense mitochondria released from damaged cells as danger signals to activate their rescue properties[J]. Cell Death Differ, 2017, 24: 1224-1238. doi:  10.1038/cdd.2017.51
    [20] You J, Feng L, Xin M, et al. Cerebral Ischemic Postconditioning Plays a Neuroprotective Role through Regulation of Central and Peripheral Glutamate[J]. Biomed Res Int, 2018, 2018: 6316059. http://www.onacademic.com/detail/journal_1000040477150510_5979.html
    [21] Fang Y, Jiang D, Wang Y, et al. Neuroprotection of rhGLP-1 in diabetic rats with cerebral ischemia/reperfusion injury via regulation of oxidative stress, EAAT2, and apoptosis[J]. Drug Dev Res, 2018, 79: 249-259. doi:  10.1002/ddr.21439
    [22] Amantea D, Bagetta G. Excitatory and inhibitory amino acid neurotransmitters in stroke: from neurotoxicity to ischemic tolerance[J]. Curr Opin Pharmacol, 2017, 35: 111-119. doi:  10.1016/j.coph.2017.07.014
    [23] Ding DC, Shyu WC, Lin SZ. Mesenchymal stem cells[J]. Cell Transplant, 2011, 20: 5-14. doi:  10.3727/096368910X
    [24] Galipeau J, Sensébé L. Mesenchymal Stromal Cells: Clinical Challenges and Therapeutic Opportunities[J]. Cell Stem Cell, 2018, 22: 824-833. doi:  10.1016/j.stem.2018.05.004
    [25] Hoang DM, Pham PT, Bach TQ, et al. Stem cell-based therapy for human diseases[J]. Signal Transduct Target Ther, 2022, 7: 272. doi:  10.1038/s41392-022-01134-4
    [26] Salehi MS, Pandamooz S, Safari A, et al. Epidermal neural crest stem cell transplantation as a promising therapeutic strategy for ischemic stroke[J]. CNS Neurosci Ther, 2020, 26: 670-681. doi:  10.1111/cns.13370
    [27] Levy ML, Crawford JR, Dib N, et al. Phase Ⅰ/Ⅱ Study of Safety and Preliminary Efficacy of Intravenous Allogeneic Mesenchymal Stem Cells in Chronic Stroke[J]. Stroke, 2019, 50: 2835-2841. doi:  10.1161/STROKEAHA.119.026318
    [28] Andrzejwska A, Dabrowska S, Lukomska B, et al. Mesenchymal Stem Cells for Neurological Disorders[J]. Adv Sci (Weinh), 2021, 8: 2002944. doi:  10.1002/advs.202002944
    [29] Abbasi-Kangevari M, Ghamari SH, Safaeinejad F, et al. Potential Therapeutic Features of Human Amniotic Mesenchymal Stem Cells in Multiple Sclerosis: Immunomodula-tion, Inflammation Suppression, Angiogenesis Promotion, Oxidative Stress Inhibition, Neurogenesis Induction, MMPs Regulation, and Remyelination Stimulation[J]. Front Immunol, 2019, 10: 238. doi:  10.3389/fimmu.2019.00238
    [30] Wang F, Tang H, Zhu J, et al. Transplanting Mesen-chymal Stem Cells for Treatment of Ischemic Stroke[J]. Cell Transplant, 2018, 27: 1825-1834. doi:  10.1177/0963689718795424
    [31] Dabrowska S, Andrzejewska A, Lukomska B, et al. Neuroinflammation as a target for treatment of stroke using mesenchymal stem cells and extracellular vesicles[J]. J Neuroinflammation, 2019, 16: 178. doi:  10.1186/s12974-019-1571-8
    [32] Zhao LR, Duan WM, Reyes M, et al. Human bone marrow stem cells exhibit neural phenotypes and ameliorate neurological deficits after grafting into the ischemic brain of rats[J]. Exp Neurol, 2002, 174: 11-20. doi:  10.1006/exnr.2001.7853
    [33] Bronckaers A, Hilkens P, Martens W, et al. Mesenchymal stem/stromal cells as a pharmacological and therapeutic approach to accelerate angiogenesis[J]. Pharmacol Ther, 2014, 143: 181-196. doi:  10.1016/j.pharmthera.2014.02.013
    [34] Boese AC, Le QE, Pham D, et al. Neural stem cell therapy for subacute and chronic ischemic stroke[J]. Stem Cell Res Ther, 2018, 9: 154. doi:  10.1186/s13287-018-0913-2
    [35] Bagheri-Mohammadi S. Protective effects of mesenchymal stem cells on ischemic brain injury: therapeutic perspectives of regenerative medicine[J]. Cell Tissue Bank, 2021, 22: 249-262. doi:  10.1007/s10561-020-09885-6
    [36] Beneedek A, Cernica D, Mester A, et al. Modern Concepts in Regenerative Therapy for Ischemic Stroke: From Stem Cells for Promoting Angiogenesis to 3D-Bioprinted Scaffolds Customized via Carotid Shear Stress Analysis[J]. Int J Mol Sci, 2019, 20: 2574. doi:  10.3390/ijms20102574
    [37] Jeong CH, Kim SM, Lim JY, et al. Mesenchymal stem cells expressing brain-derived neurotrophic factor enhance endogenous neurogenesis in an ischemic stroke model[J]. Biomed Res Int, 2014, 2014: 129145. http://downloads.hindawi.com/journals/bmri/2014/129145.pdf
    [38] Liu J, Huang Y, He J, et al. Olfactory Mucosa Mesenchymal Stem Cells Ameliorate Cerebral Ischemic/Reperfusion Injury Through Modulation of UBIAD1 Expression[J]. Front Cell Neurosci, 2020, 14: 580206. doi:  10.3389/fncel.2020.580206
    [39] Cao D, Qiao H, He D, et al. Mesenchymal stem cells inhibited the inflammation and oxidative stress in LPS-activated microglial cells through AMPK pathway[J]. J Neural Transm (Vienna), 2019, 126: 1589-1597. doi:  10.1007/s00702-019-02102-z
    [40] Cunningham CJ, Redondo-Castro E, Allan SM. The therapeutic potential of the mesenchymal stem cell secretome in ischaemic stroke[J]. J Cereb Blood Flow Metab, 2018, 38: 1276-1292. doi:  10.1177/0271678X18776802
    [41] Huang P, Gebhart N, Richelson E, et al. Mechanism of mesenchymal stem cell-induced neuron recovery and anti-inflammation[J]. Cytotherapy, 2014, 16: 1336-1344. doi:  10.1016/j.jcyt.2014.05.007
    [42] Yoo SW, Chang DY, Lee HS, et al. Immune following suppression mesenchymal stem cell transplantation in the ischemic brain is mediated by TGF-β[J]. Neurobiol Dis, 2013, 58: 249-257. doi:  10.1016/j.nbd.2013.06.001
    [43] Redondo-Castro E, Cunningham C, Miller J, et al. Interleukin-1 primes human mesenchymal stem cells towards an anti-inflammatory and pro-trophic phenotype in vitro[J]. Stem Cell Res Ther, 2017, 8: 79. doi:  10.1186/s13287-017-0531-4
    [44] 尚羽, 李康睿, 叶民, 等. 骨髓间充质干细胞对大鼠脑缺血再灌注损伤后神经元凋亡及炎症的影响[J]. 遵义医科大学学报, 2022, 45: 289-295. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYYB202203003.htm
    [45] Yu Y, Wang D, Li H, et al. Mesenchymal stem cells derived from induced pluripotent stem cells play a key role in immunomodulation during cardiopulmonary resuscitation[J]. Brain Res, 2019, 1720: 146293. doi:  10.1016/j.brainres.2019.06.012
    [46] Li LH, Tian XR, Jiang Z, et al. The Golgi Apparatus: Panel Point of Cytosolic Ca(2+) Regulation[J]. Neurosignals, 2013, 21: 272-284. doi:  10.1159/000350471
    [47] He J, Liu J, Huang Y, et al. Olfactory Mucosa Mesenchymal Stem Cells Alleviate Cerebral Ischemia/Reperfusion Injury Via Golgi Apparatus Secretory Pathway Ca2+-ATPase Isoform1[J]. Front Cell Dev Biol, 2020, 8: 586541. doi:  10.3389/fcell.2020.586541
    [48] Turovsky EA, Golovicheva VV, Varlamvoa EG, et al. Mesenchymal stromal cell-derived extracellular vesicles afford neuroprotection by modulating PI3K/AKT pathway and calcium oscillations[J]. Int J Biol Sci, 2022, 18: 5345-5368. doi:  10.7150/ijbs.73747
  • 加载中
计量
  • 文章访问数:  1702
  • HTML全文浏览量:  88
  • PDF下载量:  58
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-30
  • 录用日期:  2023-03-24
  • 网络出版日期:  2023-03-29
  • 刊出日期:  2023-05-30

目录

    /

    返回文章
    返回

    【温馨提醒】近日,《协和医学杂志》编辑部接到作者反映,有多名不法人员冒充期刊编辑发送见刊通知,鼓动作者添加微信,从而骗取版面费的行为。特提醒您,本刊与作者联系的方式均为邮件通知或电话,稿件进度通知邮箱为:mjpumch@126.com,编辑部电话为:010-69154261,请提高警惕,谨防上当受骗!如有任何疑问,请致电编辑部核实。谢谢!