[1]
|
Sung H, Ferlay J, Siegel RL, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries[J]. CA Cancer J Clin, 2021, 71: 209-249. doi: 10.3322/caac.21660 |
[2]
|
Eastham JA, Auffenberg GB, Barocas DA, et al. Clinically Localized Prostate Cancer: AUA/ASTRO Guideline, Part Ⅰ: Introduction, Risk Assessment, Staging, and Risk-Based Management[J]. J Urol, 2022, 208: 10-18. doi: 10.1097/JU.0000000000002757 |
[3]
|
Haffner MC, Zwart W, Roudier MP, et al. Genomic and phenotypic heterogeneity in prostate cancer[J]. Nat Rev Urol, 2021, 18: 79-92. doi: 10.1038/s41585-020-00400-w |
[4]
|
Perner S, Mosquera JM, Demichelis F, et al. TMPRSS2-ERG fusion prostate cancer: an early molecular event associated with invasion[J]. Am J Surg Pathol, 2007, 31: 882-888. doi: 10.1097/01.pas.0000213424.38503.aa |
[5]
|
Zhu Y, Mo M, Wei Y, et al. Epidemiology and genomics of prostate cancer in Asian men[J]. Nat Rev Urol, 2021, 18: 282-301. doi: 10.1038/s41585-021-00442-8 |
[6]
|
Kaffenberger SD, Barbieri CE. Molecular subtyping of prostate cancer[J]. Curr Opin Urol, 2016, 26: 213-218. doi: 10.1097/MOU.0000000000000285 |
[7]
|
Abeshouse A, Ahn J, Akbani R, et al. The molecular taxonomy of primary prostate cancer[J]. Cell, 2015, 163: 1011-1025. doi: 10.1016/j.cell.2015.10.025 |
[8]
|
Stopsack KH, Nandakumar S, Wibmer AG, et al. Onco-genic genomic alterations, clinical phenotypes, and outcomes in metastatic castration-sensitive prostate cancer[J]. Clin Cancer Res, 2020, 26: 3230-3238. doi: 10.1158/1078-0432.CCR-20-0168 |
[9]
|
Taitt HE. Global trends and prostate cancer: a review of incidence, detection, and mortality as influenced by race, ethnicity, and geographic location[J]. Am J Mens Health, 2018, 12: 1807-1823. doi: 10.1177/1557988318798279 |
[10]
|
Stopsack KH, Nandakumar S, Arora K, et al. Differences in Prostate Cancer Genomes by Self-Reported Race: Contributions of Genetic Ancestry, Modifiable Cancer Risk Factors, and Clinical FactorsRacial Differences in Prostate Cancer Genomes[J]. Clin Cancer Res, 2022, 28: 318-326. doi: 10.1158/1078-0432.CCR-21-2577 |
[11]
|
Li J, Xu C, Lee HJ, et al. A genomic and epigenomic atlas of prostate cancer in Asian populations[J]. Nature, 2020, 580: 93-99. doi: 10.1038/s41586-020-2135-x |
[12]
|
Grossmann S, Hooks Y, Wilson L, et al. Development, maturation, and maintenance of human prostate inferred from somatic mutations[J]. Cell Stem Cell, 2021, 28: 1262-1274. doi: 10.1016/j.stem.2021.02.005 |
[13]
|
Stjohn J, Powell K, Conley-Lacomb MK, et al. TMPRSS2-ERG Fusion Gene Expression in Prostate Tumor Cells and Its Clinical and Biological Significance in Prostate Cancer Progression[J]. J Cancer Sci Ther, 2012, 4: 94-101. |
[14]
|
Zhou F, Gao S, Han D, et al. TMPRSS2-ERG activates NO-cGMP signaling in prostate cancer cells[J]. Oncogene, 2019, 38: 4397-4411. doi: 10.1038/s41388-019-0730-9 |
[15]
|
Hong Z, Zhang W, Ding D, et al. DNA damage promotes TMPRSS2-ERG oncoprotein destruction and prostate cancer suppression via signaling converged by GSK3β and WEE1[J]. Mol Cell, 2020, 79: 1008-1023. doi: 10.1016/j.molcel.2020.07.028 |
[16]
|
Shoag J, Liu D, Blattner M, et al. SPOP mutation drives prostate neoplasia without stabilizing oncogenic transcription factor ERG[J]. J Clin Invest, 2018, 128: 381-386. |
[17]
|
Bernasocchi T, El Tekle G, Bolis M, et al. Dual functions of SPOP and ERG dictate androgen therapy responses in prostate cancer[J]. Nat Commun, 2021, 12: 1-18. doi: 10.1038/s41467-020-20314-w |
[18]
|
Zhang J, Chen M, Zhu Y, et al. SPOP promotes nanog destruction to suppress stem cell traits and prostate cancer progression[J]. Dev Cell, 2019, 48: 329-344. doi: 10.1016/j.devcel.2018.11.035 |
[19]
|
Luo Z, Wang J, Zhu Y, et al. SPOP promotes CDCA5 degradation to regulate prostate cancer progression via the AKT pathway[J]. Neoplasia, 2021, 23: 1037-1047. doi: 10.1016/j.neo.2021.08.002 |
[20]
|
Teng M, Zhou S, Cai C, et al. Pioneer of prostate cancer: past, present and the future of FOXA1[J]. Protein Cell, 2021, 12: 29-38. doi: 10.1007/s13238-020-00786-8 |
[21]
|
Gao S, Chen S, Han D, et al. Forkhead domain mutations in FOXA1 drive prostate cancer progression[J]. Cell Res, 2019, 29: 770-772. doi: 10.1038/s41422-019-0203-2 |
[22]
|
Song B, Park SH, Zhao JC, et al. Targeting FOXA1-mediated repression of TGF-β signaling suppresses castration-resistant prostate cancer progression[J]. J Clin Invest, 2019, 129: 569-582. |
[23]
|
Zhou S, Hawley J, Soares F, et al. Noncoding mutations target cis-regulatory elements of the FOXA1 plexus in prostate cancer[J]. Nat Commun, 2020, 11: 441. doi: 10.1038/s41467-020-14318-9 |
[24]
|
Aurilio G, Cimadamore A, Mazzucchelli R, et al. Androgen receptor signaling pathway in prostate cancer: from genetics to clinical applications[J]. Cells, 2020, 9: 2653. doi: 10.3390/cells9122653 |
[25]
|
Li Y, Yang R, Henzler CM, et al. Diverse AR Gene Rearrangements Mediate Resistance to Androgen Receptor Inhibitors in Metastatic Prostate CancerAR Gene Rearrangements in Prostate Cancer[J]. Clin Cancer Res, 2020, 26: 1965-1976. doi: 10.1158/1078-0432.CCR-19-3023 |
[26]
|
Zhu Y, Dalrymple SL, Coleman I, et al. Role of androgen receptor splice variant-7 (AR-V7) in prostate cancer resistance to 2nd-generation androgen receptor signaling inhibitors[J]. Oncogene, 2020, 39: 6935-6949. doi: 10.1038/s41388-020-01479-6 |
[27]
|
Zhou T, Wang S, Song X, et al. RNF8 up-regulates AR/ARV7 action to contribute to advanced prostate cancer progression[J]. Cell Death Dis, 2022, 13: 1-15. |
[28]
|
Donehower LA, Soussi T, Korkut A, et al. Integrated analysis of TP53 gene and pathway alterations in the cancer genome atlas[J]. Cell Rep, 2019, 28: 1370-1384. doi: 10.1016/j.celrep.2019.07.001 |
[29]
|
Nientiedt C, Budczies J, Endris V, et al. Mutations in TP53 or DNA damage repair genes define poor prognostic subgroups in primary prostate cancer[J]. Urol Oncol, 2022, 40: 8. e11-8. e18. |
[30]
|
Hamid A, Gray P, Shaw G, et al. Compound Genomic Alterations of TP53, PTEN, and RB1 Tumor Suppressors in Localized and Metastatic Prostate Cancer[J]. Eur Urol, 2019, 76: 89-97. doi: 10.1016/j.eururo.2018.11.045 |
[31]
|
LIU Z, GUO H, ZHU Y, et al. TP53 alterations of hormone-naive prostate cancer in the Chinese population[J]. Prostate Cancer Prostatic Dis, 2021, 24: 482-491. doi: 10.1038/s41391-020-00302-3 |
[32]
|
Annala M, Vandekerkhove G, Khalaf D, et al. Circulating Tumor DNA Genomics Correlate with Resistance to Abiraterone and Enzalutamide in Prostate CancerctDNA and Resistance to AR-Targeted Therapy[J]. Cancer Discov, 2018, 8: 444-457. doi: 10.1158/2159-8290.CD-17-0937 |
[33]
|
Rampias T, Karagiannis D, Avgeris M, et al. The lysine specific methyltransferase KMT 2C/MLL 3 regulates DNA repair components in cancer[J]. EMBO Rep, 2019, 20: e46821. doi: 10.15252/embr.201846821 |
[34]
|
Wei Y, Wu J, Gu W, et al. Germline DNA repair gene mutation landscape in Chinese prostate cancer patients[J]. Eur Urol, 2019, 76: 280-283. doi: 10.1016/j.eururo.2019.06.004 |
[35]
|
Messina C, Cattrini C, Soldato D, et al. BRCA Mutations in Prostate Cancer: Prognostic and Predictive Implications[J]. J Oncol, 2020, 2020: 4986365. |