留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

乳腺癌骨转移研究进展——从基础到临床

刘沫含 周星彤 孙强

刘沫含, 周星彤, 孙强. 乳腺癌骨转移研究进展——从基础到临床[J]. 协和医学杂志, 2023, 14(3): 638-645. doi: 10.12290/xhyxzz.2022-0600
引用本文: 刘沫含, 周星彤, 孙强. 乳腺癌骨转移研究进展——从基础到临床[J]. 协和医学杂志, 2023, 14(3): 638-645. doi: 10.12290/xhyxzz.2022-0600
LIU Mohan, ZHOU Xingtong, SUN Qiang. Research Progress on Bone Metastasis of Breast Cancer: from Basic to Clinical Research[J]. Medical Journal of Peking Union Medical College Hospital, 2023, 14(3): 638-645. doi: 10.12290/xhyxzz.2022-0600
Citation: LIU Mohan, ZHOU Xingtong, SUN Qiang. Research Progress on Bone Metastasis of Breast Cancer: from Basic to Clinical Research[J]. Medical Journal of Peking Union Medical College Hospital, 2023, 14(3): 638-645. doi: 10.12290/xhyxzz.2022-0600

乳腺癌骨转移研究进展——从基础到临床

doi: 10.12290/xhyxzz.2022-0600
基金项目: 

中央高水平医院临床科研专项 2022-PUMCH-B-038

详细信息
    通讯作者:

    孙强, E-mail:xhsunq@163.com

  • 中图分类号: R737.9; R738.1

Research Progress on Bone Metastasis of Breast Cancer: from Basic to Clinical Research

Funds: 

National High Level Hospital Clinical Research Funding 2022-PUMCH-B-038

More Information
  • 摘要: 骨骼是晚期乳腺癌最好发的转移部位,骨转移所致骨相关事件严重影响患者的生存质量及生存期。因此,提高乳腺癌骨转移患者的生存质量、延长其生存时间,深入探究骨转移的发生发展机制、探索早期诊断方法、寻找有效的骨转移治疗方法和药物具有重要临床意义。本文主要从分子机制、影像学及生物学诊断方法、系统治疗等方面对乳腺癌骨转移的相关最新研究进展进行阐述,以期为临床诊治提供参考。
    作者贡献:刘沫含负责查阅文献、论文撰写和构思;周星彤、孙强负责查阅文献及论文修订。
    利益冲突:所有作者均声明不存在利益冲突
  • 图  1  乳腺癌骨转移的经典分子机制——“恶性循环”

    IL:白细胞介素;PTHrP:甲状旁腺激素相关肽;RANKL:核因子-κB受体活化因子配体;RANK:核因子-κB受体活化因子;TNF:肿瘤坏死因子;PGE2:前列腺素E2;M-CSF:巨噬细胞集落刺激因子;TGF-β:转化生长因子β;FGFs:纤维母细胞生长因子;IGFs:胰岛素样生长因子;BMPs:骨形成蛋白;PDGFs:血小板源性生长因子;OPG:骨保护素

  • [1] Sung H, Ferlay J, Siegel RL, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries[J]. CA Cancer J Clin, 2021, 71: 209-249. doi:  10.3322/caac.21660
    [2] Ording AG, Heide-Jorgensen U, Christiansen CF, et al. Site of metastasis and breast cancer mortality: a Danish nationwide registry-based cohort study[J]. Clin Exp Metastasis, 2017, 34: 93-101. doi:  10.1007/s10585-016-9824-8
    [3] Awolaran O, Brooks SA, Lavender V. Breast cancer osteomimicry and its role in bone specific metastasis; an integrative, systematic review of preclinical evidence[J]. Breast, 2016, 30: 156-171. doi:  10.1016/j.breast.2016.09.017
    [4] DeSantis CE, Ma J, Gaudet MM, et al. Breast cancer statistics, 2019[J]. CA Cancer J Clin, 2019, 69: 438-451. doi:  10.3322/caac.21583
    [5] Wang R, Zhu Y, Liu X, et al. The Clinicopathological features and survival outcomes of patients with different metastatic sites in stage Ⅳ breast cancer[J]. BMC Cancer, 2019, 19: 1091. doi:  10.1186/s12885-019-6311-z
    [6] Shinoda Y, Sawada R, Yoshikawa F, et al. Factors related to the quality of life in patients with bone metastases[J]. Clin Exp Metastasis, 2019, 36: 441-448. doi:  10.1007/s10585-019-09983-0
    [7] Yong M, Jensen AÖ, Jacobsen JB, et al. Survival in breast cancer patients with bone metastases and skeletal-related events: a population-based cohort study in Denmark (1999-2007)[J]. Breast Cancer Res Treat, 2011, 129: 495-503. doi:  10.1007/s10549-011-1475-5
    [8] Cleeland C, von Moos R, Walker MS, et al. Burden of symptoms associated with development of metastatic bone disease in patients with breast cancer[J]. Support Care Cancer, 2016, 24: 3557-3565. doi:  10.1007/s00520-016-3154-x
    [9] Paget S. The distribution of secondary growths in cancer of the breast. 1889[J]. Cancer Metastasis Rev, 1989, 8: 98-101. http://jcp.bmj.com/lookup/external-ref?access_num=2673568&link_type=MED&atom=%2Fjclinpath%2F61%2F5%2F570.atom
    [10] Pece S, Tosoni D, Confalonieri S, et al. Biological and molecular heterogeneity of breast cancers correlates with their cancer stem cell content[J]. Cell, 2010, 140: 62-73. doi:  10.1016/j.cell.2009.12.007
    [11] Massagué J, Obenauf AC. Metastatic colonization by circulating tumour cells[J]. Nature, 2016, 529: 298-306. doi:  10.1038/nature17038
    [12] Chaffer CL, Weinberg RA. A perspective on cancer cell metastasis[J]. Science, 2011, 331: 1559-1564. doi:  10.1126/science.1203543
    [13] Mohme M, Riethdorf S, Pantel K. Circulating and disseminated tumour cells-mechanisms of immune surveillance and escape[J]. Nat Rev Clin Oncol, 2017, 14: 155-167. doi:  10.1038/nrclinonc.2016.144
    [14] Walker ND, Patel J, Munoz JL, et al. The bone marrow niche in support of breast cancer dormancy[J]. Cancer Lett, 2016, 380: 263-271. doi:  10.1016/j.canlet.2015.10.033
    [15] Wu X, Li F, Dang L, et al. RANKL/RANK System-Based Mechanism for Breast Cancer Bone Metastasis and Related Therapeutic Strategies[J]. Front Cell Dev Biol, 2020, 8: 76. doi:  10.3389/fcell.2020.00076
    [16] Deng R, Zhang HL, Huang JH, et al. MAPK1/3 kinase-dependent ULK1 degradation attenuates mitophagy and promotes breast cancer bone metastasis[J]. Autophagy, 2021, 17: 3011-3029. doi:  10.1080/15548627.2020.1850609
    [17] Zuo H, Yang D, Wan Y. Fam20C Regulates Bone Resorption and Breast Cancer Bone Metastasis through Osteopontin and BMP4[J]. Cancer Res, 2021, 81: 5242-5254. doi:  10.1158/0008-5472.CAN-20-3328
    [18] Sun J, Huang J, Lan J, et al. Overexpression of CENPF correlates with poor prognosis and tumor bone metastasis in breast cancer[J]. Cancer Cell Int, 2019, 19: 264. doi:  10.1186/s12935-019-0986-8
    [19] Pang X, Gong K, Zhang X, et al. Osteopontin as a multifaceted driver of bone metastasis and drug resistance[J]. Pharmacol Res, 2019, 144: 235-244. doi:  10.1016/j.phrs.2019.04.030
    [20] Hofbauer LC, Bozec A, Rauner M, et al. Novel approaches to target the microenvironment of bone metastasis[J]. Nat Rev Clin Oncol, 2021, 18: 488-505. doi:  10.1038/s41571-021-00499-9
    [21] Xu WH, Liu ZB, Yang C, et al. Expression of dickkopf-1 and beta-catenin related to the prognosis of breast cancer patients with triple negative phenotype[J]. PLoS One, 2012, 7: e37624. doi:  10.1371/journal.pone.0037624
    [22] Wu K, Feng J, Lyu F, et al. Exosomal miR-19a and IBSP cooperate to induce osteolytic bone metastasis of estrogen receptor-positive breast cancer[J]. Nat Commun, 2021, 12: 5196. doi:  10.1038/s41467-021-25473-y
    [23] 翟士军, 张玉娜, 米宝明, 等. SPECT/CT融合骨显像对乳腺癌骨转移的诊断价值[J]. 中国辐射卫生, 2016, 25: 746-748, 752. doi:  10.13491/j.cnki.issn.1004-714x.2016.06.037

    Zhai SJ, Zhang YN, Mi BM, et al. The Diagnostic Value of SPECT/CT Fusion Bone Imaging for Bone Metastases of Breast Cancer[J]. Zhongguo Fushe Weisheng, 2016, 25: 746-748, 752. doi:  10.13491/j.cnki.issn.1004-714x.2016.06.037
    [24] Kuji I, Yamane T, Seto A, et al. Skeletal standardized uptake values obtained by quantitative SPECT/CT as an osteoblastic biomarker for the discrimination of active bone metastasis in prostate cancer[J]. Eur J Hybrid Imaging, 2017, 1: 2. doi:  10.1186/s41824-017-0006-y
    [25] Zhao Z, Pi Y, Jiang L, et al. Deep neural network based artificial intelligence assisted diagnosis of bone scintigraphy for cancer bone metastasis[J]. Sci Rep, 2020, 10: 17046. doi:  10.1038/s41598-020-74135-4
    [26] Paydary K, Seraj SM, Zadeh MZ, et al. The Evolving Role of FDG-PET/CT in the Diagnosis, Staging, and Treatment of Breast Cancer[J]. Mol Imaging Biol, 2019, 21: 1-10. http://www.onacademic.com/detail/journal_1000040230568610_2e47.html
    [27] van Es SC, Velleman T, Elias SG, et al. Assessment of Bone Lesions with (18)F-FDG PET Compared with (99m)Tc Bone Scintigraphy Leads to Clinically Relevant Differences in Metastatic Breast Cancer Management[J]. J Nucl Med, 2021, 62: 177-183. doi:  10.2967/jnumed.120.244640
    [28] Damle NA, Bal C, Bandopadhyaya GP, et al. The role of 18F-fluoride PET-CT in the detection of bone metastases in patients with breast, lung and prostate carcinoma: a comparison with FDG PET/CT and 99mTc-MDP bone scan[J]. Jpn J Radiol, 2013, 31: 262-269. doi:  10.1007/s11604-013-0179-7
    [29] Choi J, Raghavan M. Diagnostic imaging and image-guided therapy of skeletal metastases[J]. Cancer Control, 2012, 19: 102-112. doi:  10.1177/107327481201900204
    [30] Choi J, Gyamfi J, Jang H, et al. The role of tumor-associated macrophage in breast cancer biology[J]. Histol Histopathol, 2018, 33: 133-145. http://d.wanfangdata.com.cn/periodical/cd19a6171cf085ce1cb4411ac0cf77b0
    [31] Daldrup-Link HE, Golovko D, Ruffell B, et al. MRI of tumor-associated macrophages with clinically applicable iron oxide nanoparticles[J]. Clin Cancer Res, 2011, 17: 5695-5704. doi:  10.1158/1078-0432.CCR-10-3420
    [32] Shih YY, Hsu YH, Duong TQ, et al. Longitudinal study of tumor-associated macrophages during tumor expansion using MRI[J]. NMR Biomed, 2011, 24: 1353-1360. doi:  10.1002/nbm.1698
    [33] Makela AV, Gaudet JM, Foster PJ. Quantifying tumor associated macrophages in breast cancer: a comparison of iron and fluorine-based MRI cell tracking[J]. Sci Rep, 2017, 7: 42109. doi:  10.1038/srep42109
    [34] 杨志, 杨贵生, 李宁, 等. 全身骨显像联合CA15-3和CEA检测对乳腺癌骨转移的诊断价值[J]. 中华肿瘤防治杂志, 2016, 23: 1229-1123. doi:  10.16073/j.cnki.cjcpt.2016.18.005

    Yang Z, Yang GS, Li N, et al. Diagnostic value of combined whole body bone scintigraphy and serum CA15-3, CEA in breast cancer with bone metastases[J]. Zhonghua Zhongliu Fangzhi Zazhi, 2016, 23: 1229-1123. doi:  10.16073/j.cnki.cjcpt.2016.18.005
    [35] Yazdani A, Dorri S, Atashi A, et al. Bone Metastasis Prognostic Factors in Breast Cancer[J]. Breast Cancer (Auckl), 2019, 13: 1178223419830978.
    [36] Fakhari A, Gharepapagh E, Dabiri S, et al. Correlation of cancer antigen 15-3 (CA15-3) serum level and bony metastases in breast cancer patients[J]. Med J Islam Repub Iran, 2019, 33: 142. http://doc.paperpass.com/foreign/rgArti20194820470.html
    [37] Sarvari BK, Sankara Mahadev D, Rupa S, et al. Detection of Bone Metastases in Breast Cancer (BC) Patients by Serum Tartrate-Resistant Acid Phosphatase 5b (TRACP 5b), a Bone Resorption Marker and Serum Alkaline Phosphatase (ALP), a Bone Formation Marker, in Lieu of Whole Body Skeletal Scintigraphy with Technetium99m MDP[J]. Indian J Clin Biochem, 2015, 30: 66-71.
    [38] 吴春娇, 马丽霞, 朱晶, 等. 联合检测乳腺癌骨转移患者中尿Ⅰ型胶原氨基末端肽和Ⅰ型胶原羧基末端肽的临床意义[J]. 中华肿瘤杂志, 2016, 38: 693-697.

    Wu CJ, Ma LX, Zhu J, et al. Clinical significance of combined detection of urine NTX and serum ICTP for breast cancer patients with bone metastases[J]. Zhonghua Zhongliu Zazhi, 2016, 38: 693-697.
    [39] Zuo CT, Yin DC, Fan HX, et al. Study on diagnostic value of P1NP and beta-CTX in bone metastasis of patients with breast cancer and the correlation between them[J]. Eur Rev Med Pharmacol Sci, 2019, 23: 5277-5284.
    [40] Wong MHF, Stockler MR, Pavlakis N. Bisphosphonates and other bone agents for breast cancer[J]. Cochrane Database Syst Rev, 2012(2): CD003474. http://esmoopen.bmj.com/lookup/external-ref?access_num=22336790&link_type=MED&atom=%2Fesmoopen%2F1%2F2%2Fe000037.atom
    [41] Aft R, Naughton M, Trinkaus K, et al. Effect of zoledronic acid on disseminated tumour cells in women with locally advanced breast cancer: an open label, randomised, phase 2 trial[J]. Lancet Oncol, 2010, 11: 421-428. doi:  10.1016/S1470-2045(10)70054-1
    [42] Zagzag J, Hu MI, Fisher SB, et al. Hypercalcemia and cancer: Differential diagnosis and treatment[J]. CA Cancer J Clin, 2018, 68: 377-386. doi:  10.3322/caac.21489
    [43] Sun W, Ge K, Jin Y, et al. Bone-Targeted Nanoplatform Combining Zoledronate and Photothermal Therapy To Treat Breast Cancer Bone Metastasis[J]. ACS Nano, 2019, 13: 7556-7567. doi:  10.1021/acsnano.9b00097
    [44] Iranikhah M, Wilborn TW, Wensel TM, et al. Denosumab for the Prevention of Skeletal-Related Events in Patients with Bone Metastasis from Solid Tumor[J]. Pharmacotherapy, 2012, 32: 274-284. doi:  10.1002/j.1875-9114.2011.01092.x
    [45] Gómez-Aleza C, Nguyen B, Yoldi G, et al. Inhibition of RANK signaling in breast cancer induces an anti-tumor immune response orchestrated by CD8+ T cells[J]. Nat Commun, 2020, 11: 6335. doi:  10.1038/s41467-020-20138-8
    [46] Vadhan-Raj S, von Moos R, Fallowfield LJ, et al. Clinical benefit in patients with metastatic bone disease: results of a phase 3 study of denosumab versus zoledronic acid[J]. Ann Oncol, 2012, 23: 3045-3051. doi:  10.1093/annonc/mds175
    [47] Diel I, Ansorge S, Hohmann D, et al. Real-world use of denosumab and bisphosphonates in patients with solid tumours and bone metastases in Germany[J]. Support Care Cancer, 2020, 28: 5223-5233. doi:  10.1007/s00520-020-05357-5
    [48] Barton MK. Denosumab an option for patients with bone metastasis from breast cancer[J]. Ca Cancer J Clin, 2011, 61: 135-136. doi:  10.3322/caac.20116
    [49] Gnant M, Pfeiler G, Steger GG, et al. Adjuvant denosumab in postmenopausal patients with hormone receptor-positive breast cancer (ABCSG-18): disease-free survival results from a randomised, double-blind, placebo-controlled, phase 3 trial[J]. Lancet Oncol, 2019, 20: 339-351. doi:  10.1016/S1470-2045(18)30862-3
    [50] Coleman R, Finkelstein DM, Barrios C, et al. Adjuvant denosumab in early breast cancer (D-CARE): an interna-tional, multicentre, randomised, controlled, phase 3 trial[J]. Lancet Oncol, 2020, 21: 60-72. doi:  10.1016/S1470-2045(19)30687-4
    [51] Oruç Z, Kaplan MA, Arslan Ç. An update on the currently available and future chemotherapy for treating bone metastases in breast cancer patients[J]. Expert Opin Pharmacother, 2018, 19: 1305-1316. doi:  10.1080/14656566.2018.1504922
    [52] Vashum Y, Kottaiswamy A, Bupesh G, et al. Inhibitory Effects of Cathepsin K Inhibitor (ODN-MK-0822) on the Paracrine Pro-Osteoclast Factors of Breast Cancer Cells[J]. Curr Mol Pharmacol, 2021, 14: 1134-1145. doi:  10.2174/1874467214666210211162118
    [53] Clézardin P. Therapeutic targets for bone metastases in breast cancer[J]. Breast Cancer Res, 2011, 13: 207. doi:  10.1186/bcr2835
    [54] De Felice M, Lambert D, Holen I, et al. Effects of Src-kinase inhibition in cancer-induced bone pain[J]. Mol Pain, 2016, 12: 1744806916643725. doi:  10.1177_1744806916643725.pdf
    [55] Paul D, Vukelja SJ, Ann Holmes F, et al. Randomized phase-Ⅱ evaluation of letrozole plus dasatinib in hormone receptor positive metastatic breast cancer patients[J]. NPJ Breast Cancer, 2019, 5: 36. doi:  10.1038/s41523-019-0132-8
    [56] Schott AF, Barlow WE, Van Poznak CH, et al. Phase Ⅱ studies of two different schedules of dasatinib in bone metastasis predominant metastatic breast cancer: SWOG S0622[J]. Breast Cancer Res Treat, 2016, 159: 87-95. doi:  10.1007/s10549-016-3911-z
    [57] Hesse E, Schr der S, Brandt D, et al. Sclerostin inhibition alleviates breast cancer-induced bone metastases and muscle weakness[J]. JCI Insight, 2019, 5: e125543.
    [58] Jaschke N, Kleymann A, Hofbauer LC, et al. Dorsomorphin: A novel inhibitor of Dickkopf-1 in breast cancer[J]. Biochem Biophys Res Commun, 2020, 524: 360-365. doi:  10.1016/j.bbrc.2020.01.106
    [59] Tanja S, Vivek V, Robert F, et al. Randomized phase Ⅱ trial evaluating pain response in patients with spinal metastases following stereotactic body radiotherapy versus three-dimensional conformal radiotherapy[J]. Radiother Oncol, 2018, 128: 274-282. doi:  10.1016/j.radonc.2018.04.030
    [60] Sprave T, Verma V, Förster R, et al. Local response and pathologic fractures following stereotactic body radiotherapy versus three-dimensional conformal radiotherapy for spinal metastases-a randomized controlled trial[J]. BMC Cancer, 2018, 18: 859. doi:  10.1186/s12885-018-4777-8
    [61] Suominen MI, Rissanen JP, Kakonen R, et al. Survival benefit with radium-223 dichloride in a mouse model of breast cancer bone metastasis[J]. J Natl Cancer Inst, 2013, 105: 908-916. doi:  10.1093/jnci/djt116
    [62] Takalkar A, Adams S, Subbiah V. Radium-223 dichloride bone-targeted alpha particle therapy for hormone-refractory breast cancer metastatic to bone[J]. Exp Hematol Oncol, 2014, 3: 23. doi:  10.1186/2162-3619-3-23
    [63] Ueno NT, Tahara RK, Fujii T, et al. Phase Ⅱ study of Radium-223 dichloride combined with hormonal therapy for hormone receptor-positive, bone-dominant metastatic breast cancer[J]. Cancer Med, 2020, 9: 1025-1032. doi:  10.1002/cam4.2780
  • 加载中
图(1)
计量
  • 文章访问数:  589
  • HTML全文浏览量:  74
  • PDF下载量:  149
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-18
  • 录用日期:  2022-12-02
  • 网络出版日期:  2022-12-29
  • 刊出日期:  2023-05-30

目录

    /

    返回文章
    返回

    【温馨提醒】近日,《协和医学杂志》编辑部接到作者反映,有多名不法人员冒充期刊编辑发送见刊通知,鼓动作者添加微信,从而骗取版面费的行为。特提醒您,本刊与作者联系的方式均为邮件通知或电话,稿件进度通知邮箱为:mjpumch@126.com,编辑部电话为:010-69154261,请提高警惕,谨防上当受骗!如有任何疑问,请致电编辑部核实。谢谢!