[1]
|
Löhr J M, Vujasinovic M, Rosendahl J, et al. IgG4-related diseases of the digestive tract[J]. Nat Rev Gastroenterol Hepatol, 2022, 19:185-97. |
[2]
|
Shimosegawa T, Chari S T, Frulloni L, et al. International consensus diagnostic criteria for autoimmune pancreatitis:guidelines of the International Association of Pancreatology[J]. Pancreas, 2011, 40:352-358. |
[3]
|
Naitoh I, Kamisawa T, Tanaka A, et al. Clinical characteristics of immunoglobulin IgG4-related sclerosing cholangitis:Comparison of cases with and without autoimmune pancreatitis in a large cohort[J]. Dig Liver Dis, 2021, 53:1308-1314. |
[4]
|
Nishimori I, Tamakoshi A, Kawa S, et al. Influence of steroid therapy on the course of diabetes mellitus in patients with autoimmune pancreatitis:findings from a nationwide survey in Japan[J]. Pancreas, 2006, 32:244-248. |
[5]
|
Kamisawa T, Egawa N, Inokuma S, et al. Pancreatic endocrine and exocrine function and salivary gland function in autoimmune pancreatitis before and after steroid therapy[J]. Pancreas, 2003, 27:235-238. |
[6]
|
Javed A A, Wright M J, Ding D, et al. Autoimmune Pancreatitis:A Critical Analysis of the Surgical Experience in an Era of Modern Diagnostics[J]. Pancreas, 2021, 50:556-563. |
[7]
|
Frulloni L, Scattolini C, Katsotourchi A M, et al. Exocrine and Endocrine Pancreatic Function in 21 Patients Suffering from Autoimmune Pancreatitis before and after Steroid Treatment[J]. Pancreatology, 2010, 10:129-133. |
[8]
|
Estrada P, Pfau P. Diagnosing autoimmune pancreatitis:choosing your weapon[J]. Gastrointest Endosc, 2020, 91:382-384. |
[9]
|
Arora K, Rivera M, Ting D T, et al. The histological diagnosis of IgG4-related disease on small biopsies:challenges and pitfalls[J]. Histopathology, 2019, 74:688-698. |
[10]
|
Okazaki K, Kawa S, Kamisawa T, et al. Amendment of the Japanese consensus guidelines for autoimmune pancreatitis, 2020[J]. J Gastroenterol, 2022, 57:225-245. |
[11]
|
张盼盼, 张文. IgG4相关性自身免疫性胰腺炎治疗中免疫抑制剂的应用[J]. 临床肝胆病杂志, 2018, 34:5. |
[12]
|
van der Neut Kolfschoten M, Schuurman J, Losen M, et al. Anti-inflammatory activity of human IgG4 antibodies by dynamic Fab arm exchange[J]. Science, 2007, 317:1554-1557. |
[13]
|
Hubers L M, Vos H, Schuurman A R, et al. Annexin A11 is targeted by IgG4 and IgG1 autoantibodies in IgG4-related disease[J]. Gut, 2018, 67:728-735. |
[14]
|
Shiokawa M, Kodama Y, Kuriyama K, et al. Pathogenicity of IgG in patients with IgG4-related disease[J]. Gut, 2016, 65:1322-1332. |
[15]
|
Wallace Z S, Mattoo H, Carruthers M, et al. Plasmablasts as a biomarker for IgG4-related disease, independent of serum IgG4 concentrations[J]. Ann Rheum Dis, 2015, 74:190-195. |
[16]
|
Della-Torre E, Rigamonti E, Perugino C, et al. B lymphocytes directly contribute to tissue fibrosis in patients with IgG4-related disease[J]. J Allergy Clin Immunol, 2020, 145:968-981. |
[17]
|
Maillette de Buy Wenniger LJ, Doorenspleet ME, Klarenbeek PL, et al. Immunoglobulin G4+ clones identified by next-generation sequencing dominate the B cell receptor repertoire in immunoglobulin G4 associated cholangitis[J]. Hepatology (Baltimore, Md), 2013, 57:2390-2398. |
[18]
|
Sumimoto K, Uchida K, Kusuda T, et al. The role of CD19+CD24highCD38high and CD19+CD24highCD27+ regulatory B cells in patients with type 1 autoimmune pancreatitis[J]. Pancreatology, 2014, 14:193-200. |
[19]
|
Akitake R, Watanabe T, Zaima C, et al. Possible involvement of T helper type 2 responses to Toll-like receptor ligands in IgG4-related sclerosing disease[J]. Gut, 2010, 59:542-545. |
[20]
|
Suzuki K, Tamaru J, Okuyama A, et al. IgG4-positive multi-organ lymphoproliferative syndrome manifesting as chronic symmetrical sclerosing dacryo-sialadenitis with subsequent secondary portal hypertension and remarkable IgG4-linked IL-4 elevation[J]. Rheumatology (Oxford, England), 2010, 49:1789-1791. |
[21]
|
Meiler F, Klunker S, Zimmermann M, et al. Distinct regulation of IgE, IgG4 and IgA by T regulatory cells and toll-like receptors[J]. Allergy, 2008, 63:1455-1463. |
[22]
|
Maehara T, Mattoo H, Ohta M, et al. Lesional CD4+ IFN-γ+ cytotoxic T lymphocytes in IgG4-related dacryoadenitis and sialoadenitis[J]. Ann Rheum Dis, 2017, 76:377-385. |
[23]
|
Mattoo H, Mahajan VS, Maehara T, et al. Clonal expansion of CD4(+) cytotoxic T lymphocytes in patients with IgG4-related disease[J]. J Allergy Clin Immunol, 2016, 138:825-838. |
[24]
|
Pillai S, Perugino C, Kaneko N. Immune mechanisms of fibrosis and inflammation in IgG4-related disease[J]. Curr Opin Rheumatol, 2020, 32:146-151. |
[25]
|
Boonpiyathad T, Satitsuksanoa P, Akdis M, et al. Il-10 producing T and B cells in allergy[J]. Seminars in Immunology, 2019, 44:101326. |
[26]
|
Kusuda T, Uchida K, Miyoshi H, et al. Involvement of inducible costimulatorand interleukin 10-positive regulatory T cells in the development of IgG4-related autoimmune pancreatitis[J]. Pancreas, 2011, 40:1120-1130. |
[27]
|
Akiyama M, Suzuki K, Kassai Y, et al. Resolution of elevated circulating regulatory T cells by corticosteroids in patients with IgG4-related dacryoadenitis and sialoadenitis[J]. Int J Rheum Dis, 2016, 19:430-432. |
[28]
|
Miyoshi H, Uchida K, Taniguchi T, et al. Circulating naïve and CD4+CD25high regulatory T cells in patients with autoimmune pancreatitis[J]. Pancreas, 2008, 36:133-140. |
[29]
|
Mattoo H, Mahajan VS, Della-Torre E, et al. De novo oligoclonal expansions of circulating plasmablasts in active and relapsing IgG4-related disease[J]. J Allergy Clin Immunol, 2014, 134:679-687. |
[30]
|
Maehara T, Mattoo H, Mahajan VS, et al. The expansion in lymphoid organs of IL-4(+) BATF(+) T follicular helper cells is linked to IgG4 class switching in vivo[J]. Life science alliance, 2018, 1(1). |
[31]
|
Akiyama M, Yasuoka H, Yoshimoto K, et al. Interleukin-4 contributes to the shift of balance of IgG subclasses toward IgG4 in IgG4-related disease[J]. Cytokine, 2018, 110:416-419. |
[32]
|
Zhang J, Lian M, Li B, et al. Interleukin-35 Promotes Th9 Cell Differentiation in IgG4-Related Disorders:Experimental Data and Review of the Literature[J]. Clin Rev Allergy Immunol, 2021, 60:132-145. |
[33]
|
Xia C, Liu C, Liu Y, et al. Increased Circulating Th1 and Tfh1 Cell Numbers Are Associated with Disease Activity in Glucocorticoid-Treated Patients with IgG4-Related Disease[J]. J Immunol Res, 2020, 2020:3757015. |
[34]
|
Moriyama M, Nakamura S. Th1/Th2 Immune Balance and Other T Helper Subsets in IgG4-Related Disease[J]. Curr Top Microbiol Immunol, 2017, 401:75-83. |
[35]
|
Siegal F P, Kadowaki N, Shodell M, et al. The nature of the principal type 1 interferon-producing cells in human blood[J]. Science, 1999, 284:1835-1837. |
[36]
|
Kawai T, Akira S. Toll-like receptors and their crosstalk with other innate receptors in infection and immunity[J]. Immunity, 2011, 34:637-650. |
[37]
|
Blasius A L, Beutler B. Intracellular toll-like receptors[J]. Immunity, 2010, 32:305-315. |
[38]
|
Honda K, Takaoka A, Taniguchi T. Type I interferon[corrected] gene induction by the interferon regulatory factor family of transcription factors[J]. Immunity, 2006, 25:349-360. |
[39]
|
Kawai T, Sato S, Ishii K J, et al. Interferon-alpha induction through Toll-like receptors involves a direct interaction of IRF7 with MyD88 and TRAF6[J]. Nat Immunol, 2004, 5:1061-1068. |
[40]
|
Watanabe T, Asano N, Fichtner-Feigl S, et al. NOD1 contributes to mouse host defense against Helicobacter pylori via induction of type I IFN and activation of the ISGF3 signaling pathway[J]. J Clin Invest, 2010, 120:1645-1662. |
[41]
|
Minaga K, Watanabe T, Hara A, et al. Plasmacytoid Dendritic Cells as a New Therapeutic Target for Autoimmune Pancreatitis and IgG4-Related Disease[J]. Front Immunol, 2021, 12:713779. |
[42]
|
Arai Y, Yamashita K, Kuriyama K, et al. Plasmacytoid Dendritic Cell Activation and IFN-α Production Are Prominent Features of Murine Autoimmune Pancreatitis and Human IgG4-Related Autoimmune Pancreatitis[J]. J Immunol, 2015, 195:3033-3044. |
[43]
|
Kamata K, Watanabe T, Minaga K, et al. Intestinal dysbiosis mediates experimental autoimmune pancreatitis via activation of plasmacytoid dendritic cells[J]. Int Immunol, 2019, 31:795-809. |
[44]
|
Watanabe T, Minaga K, Kamata K, et al. Mechanistic Insights into Autoimmune Pancreatitis and IgG4-Related Disease[J]. Trends in Immunol, 2018, 39:874-889. |
[45]
|
Watanabe T, Yamashita K, Arai Y, et al. Chronic Fibro-Inflammatory Responses in Autoimmune Pancreatitis Depend on IFN-α and IL-33 Produced by Plasmacytoid Dendritic Cells[J]. J Immunol, 2017, 198:3886-3896. |
[46]
|
Moriyama M, Nakamura S. Potential Pathways in the Pathogenesis of IgG4-Related Disease[M].Tokyo:Springer Japan, 2016:43-54. |
[47]
|
Qureshi A, Ghobrial Y, De Castro J, et al. Autoimmune pancreatitis-What we know and what do we have to know?[J]. Autoimmun Rev, 2021, 20:102912. |
[48]
|
Chang YJ, Kim HY, Albacker LA, et al. Innate lymphoid cells mediate influenza-induced airway hyper-reactivity independently of adaptive immunity[J]. Nat Immunol, 2011, 12:631-638. |
[49]
|
Baenziger S, Heikenwalder M, Johansen P, et al. Triggering TLR7 in mice induces immune activation and lymphoid system disruption, resembling HIVmediated pathology[J]. Blood, 2009, 113:377-388. |
[50]
|
Tsuboi H, Nakai Y, Iizuka M, et al. DNA microarray analysis of labial salivary glands in IgG4-related disease:comparison with Sjögren's syndrome[J]. Arthritis Rheumatol, 2014, 66:2892-2899. |
[51]
|
Akiyama M, Yasuoka H, Yoshimoto K, et al. CC-chemokine ligand 18 is a useful biomarker associated with disease activity in IgG4-related disease[J]. Annals of the rheumatic diseases, 2018, 77:1386-1387. |
[52]
|
Schwartz C, Eberle JU, Voehringer D. Basophils in inflammation[J]. Eur J Pharmacol, 2016, 778:90-95. |
[53]
|
Watanabe T, Yamashita K, Fujikawa S, et al. Involvement of activation of toll-like receptors and nucleotide-binding oligomerization domain-like receptors in enhanced IgG4 responses in autoimmune pancreatitis[J]. Arthritis and rheumatism, 2012, 64:914-924. |
[54]
|
Bieneman AP, Chichester KL, Chen YH, et al. Toll-like receptor 2 ligands activate human basophils for both IgE-dependent and IgE-independent secretion[J]. J Allergy Clin Immunol, 2005, 115:295-301. |
[55]
|
Egawa M, Mukai K, Yoshikawa S, et al. Inflammatory monocytes recruited to allergic skin acquire an anti-inflammatory M2 phenotype via basophilderived interleukin-4[J]. Immunity, 2013, 38:570-580. |
[56]
|
Shiokawa M, Kodama Y, Sekiguchi K, et al. Laminin 511 is a target antigen in autoimmune pancreatitis[J]. Sci Transl Med, 2018, 10:eaaq0997. |
[57]
|
Perugino CA, AlSalem SB, Mattoo H, et al. Identification of galectin-3 as an autoantigen in patients with IgG(4)-related disease[J]. J Allergy Clin Immunol, 2019, 143:736-745. |