[1]
|
Socała K, Doboszewska U, Szopa A, et al. The role of microbiota-gut-brain axis in neuropsychiatric and neurological disorders[J]. Pharmacol Res, 2021, 172: 105840. doi: 10.1016/j.phrs.2021.105840 |
[2]
|
Xiao L, Liu Q, Luo M, et al. Gut Microbiota-Derived Metabolites in Irritable Bowel Syndrome[J]. Front Cell Infect Microbiol, 2021, 11: 729346. doi: 10.3389/fcimb.2021.729346 |
[3]
|
Doroszkiewicz J, Groblewska M, Mroczko B. The Role of Gut Microbiota and Gut-Brain Interplay in Selected Diseases of the Central Nervous System[J]. Int J Mol Sci, 2021, 22: 10028. doi: 10.3390/ijms221810028 |
[4]
|
Hou H, Chen D, Zhang K, et al. Gut microbiota-derived short-chain fatty acids and colorectal cancer: Ready for clinical translation?[J]. Cancer Lett, 2022, 526: 225-235. doi: 10.1016/j.canlet.2021.11.027 |
[5]
|
Zaky A, Glastras SJ, Wong MYW, et al. The Role of the Gut Microbiome in Diabetes and Obesity-Related Kidney Disease[J]. Int J Mol Sci, 2021, 22: 9641. doi: 10.3390/ijms22179641 |
[6]
|
Cai J, Sun L, Gonzalez FJ. Gut microbiota-derived bile acids in intestinal immunity, inflammation, and tumori-genesis[J]. Cell Host Microbe, 2022, 30: 289-300. doi: 10.1016/j.chom.2022.02.004 |
[7]
|
Adhikari AA, Ramachandran D, Chaudhari SN, et al. A Gut-Restricted Lithocholic Acid Analog as an Inhibitor of Gut Bacterial Bile Salt Hydrolases[J]. ACS Chem Biol, 2021, 16: 1401-1412. doi: 10.1021/acschembio.1c00192 |
[8]
|
Campbell C, McKenney PT, Konstantinovsky D, et al. Bacterial metabolism of bile acids promotes generation of peripheral regulatory T cells[J]. Nature, 2020, 581: 475-479. doi: 10.1038/s41586-020-2193-0 |
[9]
|
Jin WB, Li TT, Huo D, et al. Genetic manipulation of gut microbes enables single-gene interrogation in a complex microbiome[J]. Cell, 2022, 185: 547-562. e522. doi: 10.1016/j.cell.2021.12.035 |
[10]
|
Franzosa EA, Sirota-Madi A, Avila-Pacheco J, et al. Gut microbiome structure and metabolic activity in inflammatory bowel disease[J]. Nat Microbiol, 2019, 4: 293-305. doi: 10.1038/s41564-018-0306-4 |
[11]
|
Gadaleta RM, Garcia-Irigoyen O, Cariello M, et al. Fibroblast Growth Factor 19 modulates intestinal microbiota and inflammation in presence of Farnesoid X Receptor[J]. EBioMedicine, 2020, 54: 102719. doi: 10.1016/j.ebiom.2020.102719 |
[12]
|
Doden HL, Wolf PG, Gaskins HR, et al. Completion of the gut microbial epi-bile acid pathway[J]. Gut Microbes, 2021, 13: 1-20. |
[13]
|
Turner JR. Intestinal mucosal barrier function in health and disease[J]. Nat Rev Immunol, 2009, 9: 799-809. doi: 10.1038/nri2653 |
[14]
|
Tang WHW, Li DY, Hazen SL. Dietary metabolism, the gut microbiome, and heart failure[J]. Nat Rev Cardiol, 2019, 16: 137-154. doi: 10.1038/s41569-018-0108-7 |
[15]
|
Rajilić-Stojanović M, de Vos WM. The first 1000 cultured species of the human gastrointestinal microbiota[J]. FEMS Microbiol Rev, 2014, 38: 996-1047. doi: 10.1111/1574-6976.12075 |
[16]
|
Kamada N, Seo SU, Chen GY, et al. Role of the gut microbiota in immunity and inflammatory disease[J]. Nat Rev Immunol, 2013, 13: 321-335. doi: 10.1038/nri3430 |
[17]
|
Stanley EG, Bailey NJ, Bollard ME, et al. Sexual dimorphism in urinary metabolite profiles of Han Wistar rats revealed by nuclear-magnetic-resonance-based metabonomics[J]. Anal Biochem, 2005, 343: 195-202. doi: 10.1016/j.ab.2005.01.024 |
[18]
|
Tang WHW, Bäckhed F, Landmesser U, et al. Intestinal Microbiota in Cardiovascular Health and Disease: JACC State-of-the-Art Review[J]. J Am Coll Cardiol, 2019, 73: 2089-2105. |
[19]
|
Wang Z, Klipfell E, Bennett BJ, et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease[J]. Nature, 2011, 472: 57-63. doi: 10.1038/nature09922 |
[20]
|
Zhu W, Buffa JA, Wang Z, et al. Flavin monooxygenase 3, the host hepatic enzyme in the metaorganismal trimethyla-mine N-oxide-generating pathway, modulates platelet responsiveness and thrombosis risk[J]. J Thromb Haemost, 2018, 16: 1857-1872. doi: 10.1111/jth.14234 |
[21]
|
Bergeron N, Williams PT, Lamendella R, et al. Diets high in resistant starch increase plasma levels of trimethylamine-N-oxide, a gut microbiome metabolite associated with CVD risk[J]. Br J Nutr, 2016, 116: 2020-2029. doi: 10.1017/S0007114516004165 |
[22]
|
Hauet T, Baumert H, Gibelin H, et al. Noninvasive monitoring of citrate, acetate, lactate, and renal medullary osmolyte excretion in urine as biomarkers of exposure to ischemic reperfusion injury[J]. Cryobiology, 2000, 41: 280-291. doi: 10.1006/cryo.2000.2291 |
[23]
|
Griffin JL, Wang X, Stanley E. Does our gut microbiome predict cardiovascular risk? A review of the evidence from metabolomics[J]. Circ Cardiovasc Genet, 2015, 8: 187-191. doi: 10.1161/CIRCGENETICS.114.000219 |
[24]
|
Seldin MM, Meng Y, Qi H, et al. Trimethylamine N-Oxide Promotes Vascular Inflammation Through Signaling of Mitogen-Activated Protein Kinase and Nuclear Factor-κB[J]. J Am Heart Assoc, 2016, 5. |
[25]
|
Makrecka-Kuka M, Volska K, Antone U, et al. Trimethylamine N-oxide impairs pyruvate and fatty acid oxidation in cardiac mitochondria[J]. Toxicol Lett, 2017, 267: 32-38. doi: 10.1016/j.toxlet.2016.12.017 |
[26]
|
Savi M, Bocchi L, Bresciani L, et al. Trimethylamine-N-Oxide (TMAO)-Induced Impairment of Cardiomyocyte Function and the Protective Role of Urolithin B-Glucuronide[J]. Molecules, 2018, 23. |
[27]
|
Jacobs J, Braun J. Host genes and their effect on the intestinal microbiome garden[J]. Genome Med, 2014, 6: 119. doi: 10.1186/s13073-014-0119-x |
[28]
|
Moron R, Galvez J, Colmenero M, et al. The Importance of the Microbiome in Critically Ⅲ Patients: Role of Nutrition[J]. Nutrients, 2019, 11. |
[29]
|
Valdés-Duque BE, Giraldo-Giraldo NA, Jaillier-Ramírez AM, et al. Stool Short-Chain Fatty Acids in Critically Ⅲ Patients with Sepsis[J]. J Am Coll Nutr, 2020, 39: 706-712. doi: 10.1080/07315724.2020.1727379 |
[30]
|
Arpaia N, Campbell C, Fan X, et al. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation[J]. Nature, 2013, 504: 451-455. doi: 10.1038/nature12726 |
[31]
|
Pluznick J. A novel SCFA receptor, the microbiota, and blood pressure regulation[J]. Gut Microbes, 2014, 5: 202-207. doi: 10.4161/gmic.27492 |
[32]
|
Pluznick JL, Protzko RJ, Gevorgyan H, et al. Olfactory receptor responding to gut microbiota-derived signals plays a role in renin secretion and blood pressure regulation[J]. Proc Natl Acad Sci U S A, 2013, 110: 4410-4415. doi: 10.1073/pnas.1215927110 |
[33]
|
Samuel BS, Shaito A, Motoike T, et al. Effects of the gut microbiota on host adiposity are modulated by the short-chain fatty-acid binding G protein-coupled receptor, Gpr41[J]. Proc Natl Acad Sci U S A, 2008, 105: 16767-16772. doi: 10.1073/pnas.0808567105 |
[34]
|
Maslowski KM, Vieira AT, Ng A, et al. Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43[J]. Nature, 2009, 461: 1282-1286. doi: 10.1038/nature08530 |
[35]
|
Le Poul E, Loison C, Struyf S, et al. Functional characterization of human receptors for short chain fatty acids and their role in polymorphonuclear cell activation[J]. J Biol Chem, 2003, 278: 25481-25489. doi: 10.1074/jbc.M301403200 |
[36]
|
Tazoe H, Otomo Y, Karaki S, et al. Expression of short-chain fatty acid receptor GPR41 in the human colon[J]. Biomed Res, 2009, 30: 149-156. doi: 10.2220/biomedres.30.149 |
[37]
|
Samuel BS, Gordon JI. A humanized gnotobiotic mouse model of host-archaeal-bacterial mutualism[J]. Proc Natl Acad Sci U S A, 2006, 103: 10011-10016. doi: 10.1073/pnas.0602187103 |
[38]
|
Durazzi F, Sala C, Castellani G, et al. Comparison between 16S rRNA and shotgun sequencing data for the taxonomic characterization of the gut microbiota[J]. Sci Rep, 2021, 11: 3030. doi: 10.1038/s41598-021-82726-y |
[39]
|
Osuka A, Shimizu K, Ogura H, et al. Prognostic impact of fecal pH in critically ill patients[J]. Crit Care, 2012, 16: R119. doi: 10.1186/cc11413 |
[40]
|
Yamada T, Shimizu K, Ogura H, et al. Rapid and Sustained Long-Term Decrease of Fecal Short-Chain Fatty Acids in Critically Ill Patients With Systemic Inflammatory Response Syndrome[J]. JPEN J Parenter Enteral Nutr, 2015, 39: 569-577. doi: 10.1177/0148607114529596 |
[41]
|
Ladopoulos T, Giannaki M, Alexopoulou C, et al. Gastrointestinal dysmotility in critically ill patients[J]. Ann Gastroenterol, 2018, 31: 273-281. |
[42]
|
Imhann F, Bonder MJ, Vich Vila A, et al. Proton pump inhibitors affect the gut microbiome[J]. Gut, 2016, 65: 740-748. doi: 10.1136/gutjnl-2015-310376 |
[43]
|
Rogers MAM, Aronoff DM. The influence of non-steroidal anti-inflammatory drugs on the gut microbiome[J]. Clin Microbiol Infect, 2016, 22: 178. e171-e178. e179. |
[44]
|
Habes QLM, van Ede L, Gerretsen J, et al. Norepinephrine Contributes to Enterocyte Damage in Septic Shock Patients: A Prospective Cohort Study[J]. Shock, 2018, 49: 137-143. doi: 10.1097/SHK.0000000000000955 |
[45]
|
Fink MP. Intestinal epithelial hyperpermeability: update on the pathogenesis of gut mucosal barrier dysfunction in critical illness[J]. Curr Opin Crit Care, 2003, 9: 143-151. doi: 10.1097/00075198-200304000-00011 |
[46]
|
De-Souza DA, Greene LJ. Intestinal permeability and systemic infections in critically ill patients: effect of gluta-mine[J]. Crit Care Med, 2005, 33: 1125-1135. doi: 10.1097/01.CCM.0000162680.52397.97 |
[47]
|
Wang C, Li Q, Ren J. Microbiota-Immune Interaction in the Pathogenesis of Gut-Derived Infection[J]. Front Immunol, 2019, 10: 1873. doi: 10.3389/fimmu.2019.01873 |
[48]
|
Andriamihaja M, Lan A, Beaumont M, et al. The deleteri-ous metabolic and genotoxic effects of the bacterial metabolite p-cresol on colonic epithelial cells[J]. Free Radic Biol Med, 2015, 85: 219-227. doi: 10.1016/j.freeradbiomed.2015.04.004 |
[49]
|
Simonen M, Dali-Youcef N, Kaminska D, et al. Conjugated bile acids associate with altered rates of glucose and lipid oxidation after Roux-en-Y gastric bypass[J]. Obes Surg, 2012, 22: 1473-1480. doi: 10.1007/s11695-012-0673-5 |
[50]
|
le Roux CW, Bloom SR. Why do patients lose weight after Roux-en-Y gastric bypass?[J]. J Clin Endocrinol Metab, 2005, 90: 591-592. doi: 10.1210/jc.2004-2211 |
[51]
|
Ince C, Mayeux PR, Nguyen T, et al. The Endothelium in Sepsis[J]. Shock, 2016, 45: 259-270. doi: 10.1097/SHK.0000000000000473 |
[52]
|
Kakihana Y, Ito T, Nakahara M, et al. Sepsis-induced myocardial dysfunction: pathophysiology and management[J]. J Intensive Care, 2016, 4: 22. doi: 10.1186/s40560-016-0148-1 |
[53]
|
Hollenberg SM. Understanding stress cardiomyopathy[J]. Intensive Care Med, 2016, 42: 432-435. doi: 10.1007/s00134-015-4018-4 |
[54]
|
Stanzani G, Duchen MR, Singer M. The role of mitochondria in sepsis-induced cardiomyopathy[J]. Biochim Biophys Acta Mol Basis Dis, 2019, 1865: 759-773. doi: 10.1016/j.bbadis.2018.10.011 |
[55]
|
Yin J, Liao SX, He Y, et al. Dysbiosis of Gut Microbiota With Reduced Trimethylamine-N-Oxide Level in Patients With Large-Artery Atherosclerotic Stroke or Transient Ischemic Attack[J]. J Am Heart Assoc, 2015, 4: e002699. doi: 10.1161/JAHA.115.002699 |
[56]
|
Wang F, Li Q, Wang C, et al. Dynamic alteration of the colonic microbiota in intestinal ischemia-reperfusion injury[J]. PLoS One, 2012, 7: e42027. doi: 10.1371/journal.pone.0042027 |
[57]
|
Nagatomo Y, Tang WH. Intersections Between Microbiome and Heart Failure: Revisiting the Gut Hypothesis[J]. J Card Fail, 2015, 21: 973-980. doi: 10.1016/j.cardfail.2015.09.017 |
[58]
|
Harikrishnan S. Diet, the Gut Microbiome and Heart Failure[J]. Card Fail Rev, 2019, 5: 119-122. doi: 10.15420/cfr.2018.39.2 |
[59]
|
Wozniak H, Beckmann TS, Fröhlich L, et al. The central and biodynamic role of gut microbiota in critically ill patients[J]. Crit Care, 2022, 26: 250. doi: 10.1186/s13054-022-04127-5 |