留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于矩阵计算的组织病理学图像压缩储存算法

何睿琳 刘子妤 杨欣怡 李晨 李晓燕

何睿琳, 刘子妤, 杨欣怡, 李晨, 李晓燕. 基于矩阵计算的组织病理学图像压缩储存算法[J]. 协和医学杂志. doi: 10.12290/xhyxzz.2022-0127
引用本文: 何睿琳, 刘子妤, 杨欣怡, 李晨, 李晓燕. 基于矩阵计算的组织病理学图像压缩储存算法[J]. 协和医学杂志. doi: 10.12290/xhyxzz.2022-0127
HE Ruilin, LIU Ziyu, YANG Xinyi, LI Chen, LI Xiaoyan. Image Storage and Compression Algorithm of Histopathology Based on Matrix Calculation[J]. Medical Journal of Peking Union Medical College Hospital. doi: 10.12290/xhyxzz.2022-0127
Citation: HE Ruilin, LIU Ziyu, YANG Xinyi, LI Chen, LI Xiaoyan. Image Storage and Compression Algorithm of Histopathology Based on Matrix Calculation[J]. Medical Journal of Peking Union Medical College Hospital. doi: 10.12290/xhyxzz.2022-0127

基于矩阵计算的组织病理学图像压缩储存算法

doi: 10.12290/xhyxzz.2022-0127
基金项目: 

北京协和医学基金会瞳行病理公益项目资助

详细信息
    通讯作者:

    李晨,E-mail:lichen@bmie.neu.edu.cn

    李晓燕,E-mail:lixiaoyan@canerhosp-ln-cmu.com

  • 中图分类号: R735;TP183

Image Storage and Compression Algorithm of Histopathology Based on Matrix Calculation

Funds: 

Tongxing Pathology Public Welfare Project of Beijing Union Medical Foundation

  • 摘要: 目的 评价基于矩阵计算的组织病理学图像压缩储存算法的临床应用价值,并寻求最佳图像压缩比。 方法 利用主成分分析法(principal componentanalysis,PCA)和奇异值分解法(singular value decomposition,SVD)两种经典矩阵算法,对低、中、高分化的宫颈癌组织免疫组化染色图像及HE染色图像进行压缩重建,并采用峰值信噪比和结构相似度针对图像重建质量进行分析评估。 结果 PCA重建图像压缩比为10.18(保留53个主成分)时,低、中、高分化宫颈癌组织免疫组化染色图像峰值信噪比均值分别为43.84±0.43、43.27±0.25、43.71±0.49,压缩图像结构相似度分别为0.964±0.004、0.963±0.006、0.965±0.005;HE染色图像峰值信噪比均值分别为43.41±0.78、42.95±1.03、43.52±0.69,压缩图像结构相似度分别为0.953±0.010、0.949±0.015、0.960±0.007。SVD重建图像压缩比为9.998(保留128个奇异值)时,低、中、高分化宫颈癌组织免疫组化染色图像峰值信噪比均值分别为39.89±1.69、38.20±2.19、40.90±0.50,压缩图像结构相似度分别为0.949±0.006、0.938±0.011、0.955±0.004;HE染色图像峰值信噪比均值分别为40.31 ±0.98、39.46 ±1.59、40.77 ±1.67,压缩图像结构相似度分别为0.965 ±0.006、0.943 ±0.010、0.969 ±0.005。 结论 采用PCA和SVD可实现对组织病理学图像进行压缩储存并获得较好的图像质量,为解决医院图像存储难题提供了解决方案。
  • [1] Xu CX, Qi XG, Liu LF, et al. Research on performance of complex networks based on principal component analysis[J]. JCUPT,2019,26:40-48.
    [2] Jaradat Y, Masoud M, Jannoud I, et al. A Tutorial on Singular Value Decomposition with Applications on Image Compression and Dimensionality Reduction[C].2021 International Conference on Information Technology (ICIT), 2021:769-772.
    [3] OmarHM, Morsli M, Yaichi S,et al.Image Compression using Principal Component Analysis[C].20202nd International Conference on Mathematics and Information Technology (ICMIT), 2020:226-231.
    [4] Lim ST, Yap DFW, Manap NA,et al.Medical image compression using block-based PCA algorithm[C].2014 International Conference on Computer, Communications, and Control Technology (I4CT), 2014:171-175.
    [5] Yeganegi F, Hassanzade V, Ahadi SM.Comparative Performance Evaluation of SVD-Based Image Compression[C].Electrical Engineering (ICEE), 2018:464-469.
    [6] Guo P, Li D, Li X, et al. Deep OCT image compression with convolutional neural networks[J]. Biomed Opt Express,2020,11:3543-3554.
    [7] Liu F, Hernandez-Cabronero M, Sanchez V, et al. The Current Role of Image Compression Standards in Medical Imaging[J]. Information (Basel), 2017,8:131.
    [8] Noreña T, Romero E. Compresión de imágenes médicas, et al. Medical image compression:a review[J]. Biomedica,2013,33:137-151.
    [9] Chen Y, Janowczyk A, Madabhushi A, et al. Quantitative Assessment of the Effects of Compression on Deep Learning in Digital Pathology Image Analysis[J]. JCO Clin Cancer Inform,2020,4:221-233.
    [10] Zhang X, Yu X.Color Image Reconstruction Based on Singular Value Decomposition of Quaternion Matrices[C].20182nd IEEE Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC), 2018:2645-2647.
    [11] Alkandari A, Aljaber SJ. Principle Component Analysis algorithm (PCA) for image recognition[C]. 2015 Second International Conference on Computing Technology and Information Management (ICCTIM), 2015:76-80.
    [12] Li SJ.Image compression based on SVD algorithm[C].2021 International Conference on Computer Information Science and Artificial Intelligence (CISAI), 2021:306-309.
    [13] Pearson K. On lines and planes of closest fit to systems of points in space[J]. Philosophical Magazine,1901,2:559-572.
    [14] 陈一虎.基于SVD图像压缩技术研究[J].价值工程,2011,30:169-170.
    [15] Zhang X, Yu X.Color Image Reconstruction Based on Singular Value Decomposition of Quaternion Matrices[C]. 20182nd IEEE Advanced Information Management,Communicates,Electronic and Automation Control Conference (IMCEC), 2018:2645-2647.
  • 加载中
计量
  • 文章访问数:  2
  • HTML全文浏览量:  0
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-19
  • 录用日期:  2022-05-26
  • 网络出版日期:  2022-06-23

目录

    /

    返回文章
    返回

    尊敬的审稿专家、作者及读者朋友,因特殊原因,网站于6月30日24时至7月1日24时为镜像,在此期间登录及上传和更新功能将受到影响,给您带来不便,敬请谅解。