Characteristics of Gut Microbiota and Their Association with Lymphocyte Subsets and Disease Activity in Ankylosing Spondylitis
-
摘要:
目的 探究强直性脊柱炎(ankylosing spondylitis, AS)患者肠道菌群变化特征及其与疾病活动度、外周血淋巴细胞亚群的关系。 方法 本研究为回顾性分析。研究对象为2019年12月至2020年6月山西医科大学第二医院住院治疗的AS患者及性别、年龄与之相匹配的健康人群。收集两组肠道菌群生物信息学分析结果以及AS患者外周血淋巴细胞亚群和疾病活动度指标。比较两组肠道菌群差异,并采用Spearman相关法分析AS患者肠道菌群与疾病活动度、外周血淋巴细胞亚群的相关性。 结果 共入选符合纳入和排除标准的AS患者62例(低、高、极高疾病活动度分别为11例、26例、25例),健康人群62名。α多样性分析显示,AS患者肠道菌群Chao1指数和ACE指数均低于健康人群(P均<0.05);β多样性分析显示,两组菌群结构存在差异(P<0.01)。在肠道微生态构成分析中,发现两组样本肠道菌群优势菌门均以厚壁菌门、拟杆菌门、变形菌门为主,但二者在门和属水平上多种菌群的相对丰度存在差异。在Stamp差异菌群分析中,AS患者在门、属水平亦显示出不同于健康人群的特征:在门水平上,AS患者变形菌门、髌骨细菌门等菌群的相对丰度升高(P均<0.05),厚壁菌门、梭杆菌门等菌群的相对丰度降低(P均<0.05);在属水平上,AS患者大肠杆菌志贺菌属、克雷伯氏菌属、肠球菌属等菌群的相对丰度升高(P均<0.05),普雷沃氏菌属、粪杆菌属等菌群的相对丰度降低(P均<0.05)。Spearman相关性分析表明,AS患者粪杆菌属、瘤胃球菌属及克雷伯氏菌属等菌属的相对丰度与疾病活动度或其相关指标呈正相关(P均<0.05);阿加杆菌属的相对丰度与T细胞(r=0.302,P=0.017)、CD4+T细胞(r=0.310,P=0.014)、B细胞(r=0.292,P=0.021)、Th2细胞(r=0.429,P<0.001)、Th17细胞(r=0.288,P=0.023)水平,链球菌属的相对丰度与B细胞水平(r=0.270,P=0.034),普雷沃氏菌属的相对丰度与Th1细胞(r=0.279,P=0.028)、Th17细胞(r=0.262,P=0.040)水平,CAG-352菌属的相对丰度与Th1细胞水平(r=0.283,P=0.030)均呈正相关;大肠杆菌志贺菌属的相对丰度与Th2细胞水平(r=-0.261,P=0.040),其他肠杆菌科细菌属的相对丰度与CD4+T细胞水平(r=-0.255,P=0.046)均呈负相关。 结论 AS患者肠道菌群多样性降低,致病菌表达增多,且与外周血淋巴细胞亚群和疾病活动度具有相关性,可能参与了AS的发生与发展。 Abstract:Objective To investigate the characteristics of gut microbiome and their associations with lymphocyte subsets and disease activity in patients with ankylosing spondylitis (AS). Methods This study was a retrospective analysis. The subjects of the study were AS patients who were hospitalized in the Second Hospital of Shanxi Medical University from December 2019 to June 2020, as well as gender- and age-matched healthy controls (HCs). The fecal samples were collected, and the V3-V4 variable regions of 16S rRNA gene of gut microbiome were sequenced for bioinformatics analysis. Peripheral venous blood was collected from AS patients to determine peripheral blood lymphocyte subsets and disease activity indicators. Spearman correlation test was used to analyze the correlations between the relative abundances of gut microbiota and peripheral blood lymphocyte subsets as well as disease activity in AS patients. Results A total of 62 AS patients (11 with low disease activity, 26 with high disease activity, and 25 with extremely high disease activity) and 62 healthy people who met the inclusion and exclusion criteria were enrolled. As for α-diversity, ACE and Chao1 indices were lower in AS than in HCs(P < 0.05). Bray curtis distance-based β-diversity analysis revealed significant difference in the microbial community between AS and HCs (P < 0.01). As for the composition of the gut microbiome, Firmicutes, Bacteroidetes, and Proteobacteria were the dominant phyla in the gut microbiota of both groups, but there were differences in the abundance of various bacteria at the phylum and genus levels. In Stamp analysis, fecal microbial communities in AS differed significantly from those in HCs, which were characterized by higher abundances of phylum Proteobacteria and Patescibacteria(all P < 0.05) and a lower abundance of phylum Firmicutes and Fusobacteriota (all P < 0.05). At the genus level, the abundances of Escherichia-Shigella, Klebsiella and Enterococcus were increased while those of Prevotella and Faecalibacterium were decreased in AS patients compared to HCs(all P < 0.05). Spearman correlation analysis showed that the relative abundances of Faecalibacterium, Ruminococcus and Klebsiella in AS patients were significantly positively correlated with disease activity or its related indicators(all P < 0.05). There were positive correlations between Agathobacter and T cell (r=0.302, P=0.017), CD4+T cell (r=0.310, P=0.014), B cell (r=0.292, P=0.021), Th2 cell (r=0.429, P < 0.001), Th17 cell (r=0.288, P=0.023), Streptococcus and B cell (r=0.270, P=0.034), Prevotella and Th1 cell (r=0.279, P=0.028), Th17 cell (r=0.262, P=0.040), CAG-352 and Th1 cell (r=0.283, P=0.030). There were negative correlations between Escherichia-Shigella and Th2 cell(r=-0.261, P=0.040), other Enterobacteriaceae and CD4+T cell (r=-0.255, P=0.046). Conclusions The diversity of gut microbiota is reduced in AS patients. The abundance of pathogenic bacteria in AS patients is increased, which is correlated with changes in peripheral blood lymphocyte subsets and disease activity. Dysbiosis may be involved in the occurrence and development of AS. -
Key words:
- ankylosing spondylitis /
- gut microbiota /
- lymphocyte subsets /
- immune system diseases
作者贡献:宋子怡负责选题设计并撰写论文初稿;张升校、乔军负责实验和数据分析;赵蓉、宋珊、程婷负责数据收集和文献查阅;王彩虹、李小峰负责论文修订。利益冲突:所有作者均声明不存在利益冲突 -
图 2 AS患者与健康人群肠道菌群多样性比较
A.α多样性;B.β多样性
AS:同图 1图 3 基于Stamp分析和t检验的AS患者与健康人群肠道菌群差异图
A.门水平;B.属水平
AS:同图 1 -
[1] Brown MA, Kenna T, Wordsworth BP. Genetics of ankylosing spondylitis-insights into pathogenesis[J]. Nat Rev Rheumatol, 2016, 12: 81-91. doi: 10.1038/nrrheum.2015.133 [2] Simone D, Al Mossawi MH, Bowness P. Progress in our understanding of the pathogenesis of ankylosing spondylitis[J]. Rheumatology (Oxford), 2018, 57: vi4-vi9. doi: 10.1093/rheumatology/key001 [3] Zhou C, Zhao H, Xiao XY, et al. Metagenomic profiling of the pro-inflammatory gut microbiota in ankylosing spondylitis[J]. J Autoimmun, 2020, 107: 102360. doi: 10.1016/j.jaut.2019.102360 [4] Rosenbaum JT, Davey MP. Time for a gut check: evidence for the hypothesis that HLA-B27 predisposes to ankylosing spondylitis by altering the microbiome[J]. Arthritis Rheum, 2011, 63: 3195-3198. doi: 10.1002/art.30558 [5] Costello ME, Ciccia F, Willner D, et al. Brief report: Intestinal Dysbiosis in Ankylosing Spondylitis[J]. Arthritis Rheumatol, 2015, 67: 686-691. doi: 10.1002/art.38967 [6] Dominguez-Lopez ML, Burgos-Vargas R, Galicia-Serrano H, et al. IgG antibodies to enterobacteria 60 kDa heat shock proteins in the sera of HLA-B27 positive ankylosing spondylitis patients[J]. Scand J Rheumatol, 2002, 31: 260-265. doi: 10.1080/030097402760375133 [7] van der Linden S, Valkenburg HA, Cats A. Evaluation of diagnostic criteria for ankylosing spondylitis. A proposal for modification of the New York criteria[J]. Arthritis Rheum, 1984, 27: 361-368. doi: 10.1002/art.1780270401 [8] Aranda-Valera IC, Garrido-Castro JL, Ladehesa-Pineda L, et al. How to calculate the ASDAS based on C-reactive protein without individual questions from the BASDAI: The BASDAI-based ASDAS formula[J]. Rheumatology (Oxford), 2020, 59: 1545-1549. doi: 10.1093/rheumatology/kez480 [9] Lynch SV, Pedersen O. The human intestinal microbiome in health and disease[J]. N Engl J Med, 2016, 375: 2369-2379. doi: 10.1056/NEJMra1600266 [10] Zhang L, Han R, Zhang X, et al. Fecal microbiota in patients with ankylosing spondylitis: Correlation with dietary factors and disease activity[J]. Clin Chim Acta, 2019, 497: 189-196. doi: 10.1016/j.cca.2019.07.038 [11] Chen Z, Qi J, Wei Q, et al. Variations in gut microbial profiles in ankylosing spondylitis: disease phenotype-related dysbiosis[J]. Ann Transl Med, 2019, 7: 571. doi: 10.21037/atm.2019.09.41 [12] Breban M, Tap J, Leboime A, et al. Faecal microbiota study reveals specific dysbiosis in spondyloarthritis[J]. Ann Rheum Dis, 2017, 76: 1614-1622. doi: 10.1136/annrheumdis-2016-211064 [13] Liu G, Hao Y, Yang Q, et al. The Association of Fecal Microbiota in Ankylosing Spondylitis Cases with C-reactive Protein and Erythrocyte Sedimentation Rate[J]. Mediators Inflamm, 2020, 2020: 8884324. [14] Ciccia F, Guggino G, Rizzo A, et al. Dysbiosis and zonulin upregulation alter gut epithelial and vascular barriers in patients with ankylosing spondylitis[J]. Ann Rheum Dis, 2017, 76: 1123-1132. doi: 10.1136/annrheumdis-2016-210000 [15] Asquith M, Sternes PR, Costello ME, et al. HLA Alleles Associated With Risk of Ankylosing Spondylitis and Rheumatoid Arthritis Influence the Gut Microbiome[J]. Arthritis Rheumatol, 2019, 71: 1642-1650. doi: 10.1002/art.40917 [16] Ebringer A, Ghuloom M. Ankylosing spondylitis, HLA-B27, and klebsiella: cross reactivity and antibody studies[J]. Ann Rheum Dis, 1986, 45: 703-704. doi: 10.1136/ard.45.8.703 [17] Pedersen SJ, Maksymowych WP. The Pathogenesis of Ankylosing Spondylitis: an Update[J]. Curr Rheumatol Rep, 2019, 21: 58. doi: 10.1007/s11926-019-0856-3 [18] Antoniou AN, Lenart I, Kriston-Vizi J, et al. Salmonella exploits HLA-B27 and host unfolded protein responses to promote intracellular replication[J]. Ann Rheum Dis, 2019, 78: 74-82. doi: 10.1136/annrheumdis-2018-213532 [19] Clegg DO, Reda DJ, Abdellatif M. Comparison of sulfasalazine and placebo for the treatment of axial and peripheral articular manifestations of the seronegative spondylarthropathies: a Department of Veterans Affairs coopera-tive study[J]. Arthritis Rheum, 1999, 42: 2325-2329. doi: 10.1002/1529-0131(199911)42:11<2325::AID-ANR10>3.0.CO;2-C [20] Liu B, Yang L, Cui Z, et al. Anti-TNF-α therapy alters the gut microbiota in proteoglycan-induced ankylosing spondylitis in mice[J]. Microbiologyopen, 2019, 8: e927. [21] Ciccia F, Guggino G, Rizzo A, et al. Type 3 innate lymphoid cells producing IL-17 and IL-22 are expanded in the gut, in the peripheral blood, synovial fluid and bone marrow of patients with ankylosing spondylitis[J]. Ann Rheum Dis, 2015, 74: 1739-1747. doi: 10.1136/annrheumdis-2014-206323 [22] Chua WJ, Truscott SM, Eickhoff CS, et al. Polyclonal mucosa-associated invariant T cells have unique innate functions in bacterial infection[J]. Infect Immun, 2012, 80: 3256-3267. doi: 10.1128/IAI.00279-12 [23] Louis P, Flint HJ. Diversity, metabolism and microbial ecology of butyrate-producing bacteria from the human large intestine[J]. FEMS Microbiol Lett, 2009, 294: 1-8. doi: 10.1111/j.1574-6968.2009.01514.x [24] Round JL, Mazmanian SK. Inducible Foxp3+ regulatory T cell development by a commensal bacterium of the intestinal microbiota[J]. Proc Natl Acad Sci U S A, 2010, 107: 12204-12209. doi: 10.1073/pnas.0909122107 [25] Eastmond CJ, Willshaw HE, Burgess SE, et al. Frequency of faecal Klebsiella aerogenes in patients with ankylosing spondylitis and controls with respect to individual features of the disease[J]. Ann Rheum Dis, 1980, 39: 118-123. doi: 10.1136/ard.39.2.118 [26] Zhang L, Zhang YJ, Chen J, et al. The association of HLA-B27 and Klebsiella pneumoniae in ankylosing spondylitis: A systematic review[J]. Microb Pathog, 2018, 117: 49-54. doi: 10.1016/j.micpath.2018.02.020 [27] van Bohemen CG, Grumet FC, Zanen HC. Identification of HLA-B27M1 and -M2 cross-reactive antigens in Klebsiella, Shigella and Yersinia[J]. Immunology, 1984, 52: 607-610. [28] Ebringer RW, Cawdell DR, Cowling P, et al. Sequential studies in ankylosing spondylitis. Association of Klebsiella pneumoniae with active disease[J]. Ann Rheum Dis, 1978, 37: 146-151. doi: 10.1136/ard.37.2.146 [29] Poddubnyy D, Haibel H, Listing J, et al. Baseline radiographic damage, elevated acute-phase reactant levels, and cigarette smoking status predict spinal radiographic progres-sion in early axial spondylarthritis[J]. Arthritis Rheum, 2012, 64: 1388-1398. doi: 10.1002/art.33465 [30] Hall AB, Yassour M, Sauk J, et al. A novel Ruminococcus gnavus clade enriched in inflammatory bowel disease patients[J]. Genome Med, 2017, 9: 103. doi: 10.1186/s13073-017-0490-5 [31] Larsen JM. The immune response to Prevotella bacteria in chronic inflammatory disease[J]. Immunology, 2017, 151: 363-374. doi: 10.1111/imm.12760 -