留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

分子影像指导下的一体化精准诊疗

王国昌 朱朝晖

王国昌, 朱朝晖. 分子影像指导下的一体化精准诊疗[J]. 协和医学杂志, 2022, 13(2): 165-168. doi: 10.12290/xhyxzz.2021-0773
引用本文: 王国昌, 朱朝晖. 分子影像指导下的一体化精准诊疗[J]. 协和医学杂志, 2022, 13(2): 165-168. doi: 10.12290/xhyxzz.2021-0773
WANG Guochang, ZHU Zhaohui. Molecular Imaging-guided Precise Theranostics[J]. Medical Journal of Peking Union Medical College Hospital, 2022, 13(2): 165-168. doi: 10.12290/xhyxzz.2021-0773
Citation: WANG Guochang, ZHU Zhaohui. Molecular Imaging-guided Precise Theranostics[J]. Medical Journal of Peking Union Medical College Hospital, 2022, 13(2): 165-168. doi: 10.12290/xhyxzz.2021-0773

分子影像指导下的一体化精准诊疗

doi: 10.12290/xhyxzz.2021-0773
基金项目: 

国家自然科学基金 81871392

中国医学科学院医学与健康科技创新工程 2021-I2M-1-016

首都卫生发展科研专项 2018-1-4011

中国医学科学院临床转化基金 2019XK320032

详细信息
    通讯作者:

    朱朝晖,E-mail: zhuzhh@pumch.cn

  • 中图分类号: R445;R45

Molecular Imaging-guided Precise Theranostics

Funds: 

National Natural Science Foundation of China 81871392

CAMS Innovation Fund for Medical Sciences 2021-I2M-1-016

The Capital Health Development Scientific Research Project 2018-1-4011

CAMS Clinical and Translational Medicine Research Fund 2019XK320032

More Information
  • 摘要: 近年来,国际临床医学领域排名Top10的热点前沿中,屡屡出现分子影像及其一体化精准诊疗,如靶向前列腺特异性膜抗原的前列腺癌精准诊断与治疗。分子影像指导下的一体化精准诊疗是一个飞速发展的领域:针对任何疾病的特征靶点,都有可能找到一种或多种分子探针,通过分子影像观察其在体内的表达及动态变化,用于疾病精准诊断,并一体化指导针对同一靶点的放射性核素治疗、靶向药物治疗和术中光成像精准手术等,因此极具临床应用前景,值得广大医学工作者密切关注。
    作者贡献:王国昌负责查阅文献、撰写论文;朱朝晖负责论文构思及终稿审核、修订。
    利益冲突:所有作者均声明不存在利益冲突
  • 表  1  2017—2021年国际临床医学领域热点前沿Top10中与分子影像及其一体化精准诊疗相关的研究

    时间(年) 排名 研究内容
    2017 1 放射性核素标记PSMA PET显像在前列腺癌诊疗中的应用
    2018 2 阿尔茨海默病18F标记Tau靶向PET成像
    5 神经内分泌肿瘤相关研究
    8 放射性核素标记PSMA靶向治疗去势抵抗性前列腺癌
    2019 5 基于PET的Tau蛋白成像技术用于阿尔茨海默病等神经退行性疾病的研究
    2020 9 阿尔茨海默病Tau PET显像
    2021 10 PET/CT用于肿瘤免疫治疗评价
    PSMA:前列腺特异性膜抗原;PET:正电子发射断层显像
    下载: 导出CSV
  • [1] Weissleder R, Tung CH, Mahmood U, et al. In vivo imaging of tumors with protease-activated near-infrared fluorescent probes[J]. Natbiotechnol, 1999, 17: 375-378.
    [2] Zerhouni E. Medicine. The NIH roadmap[J]. Science, 2003, 302: 63-72. doi:  10.1126/science.1091867
    [3] Gimi B, Pathak AP, Ackerstaff E, et al. Molecular imaging of cancer: applications of magnetic resonance methods[J]. Proc IEEE Inst Electr Electron Eng, 2005, 93: 784-799. doi:  10.1109/JPROC.2005.844266
    [4] Lu ZR, Minko T. Molecular imaging for precision medicine[J]. Adv Drug Deliv Rev, 2017, 113: 1-2. doi:  10.1016/j.addr.2017.08.002
    [5] Strosberg J, El-Haddad G, Wolin E, et al. Phase 3 Trial of 177Lu-DOTATATE for Midgut Neuroendocrine Tumors[J]. N Engl J Med, 2017, 376: 125-135. doi:  10.1056/NEJMoa1607427
    [6] Hofman MS, Violet J, Hicks RJ, et al. 177Lu-PSMA-617 radionuclide treatment in patients with metastatic castration-resistant prostate cancer (LuPSMA trial): a single-centre, single-arm, phase 2 study[J]. Lancet Oncol, 2018, 19: 825-833. doi:  10.1016/S1470-2045(18)30198-0
    [7] Liu Q, Zang J, Sui H, et al. Peptide receptor radionuclide therapy of late-stage neuroendocrine tumor patients with multiple cycles of177Lu-DOTA-EB-TATE[J]. J Nucl Med, 2021, 62: 386-392. doi:  10.2967/jnumed.120.248658
    [8] Zang J, Fan X, Wang H, et al. First-in-human study of177Lu-EB-PSMA-617 in patients with metastatic castration-resistant prostate cancer[J]. Eur J Nucl Med Mol Imaging, 2019, 46: 148-158. doi:  10.1007/s00259-018-4096-y
    [9] Osl T, Schmidt A, Schwaiger M, et al. A new class of Pentixa For- and Pentixa Ther-based theranostic agents with enhanced CXCR4-targeting efficiency[J]. Theranostics, 2020, 10: 8264-8280. doi:  10.7150/thno.45537
    [10] Ballal S, Yadav MP, Kramer V, et al. A theranostic approach of[68Ga]Ga-DOTA. SA. FAPi PET/CT-guided[177Lu]Lu-DOTA. SA. FAPi radionuclide therapy in an end-stage breast cancer patient: new frontier in targeted radionuclide therapy[J]. Eur J Nucl Med Mol Imaging, 2021, 48: 942-944. doi:  10.1007/s00259-020-04990-w
    [11] Jauw YW, Zijlstra JM, de Jong D, et al. Performance of 89Zr-labeled-Rituximab-PET as an imaging biomarker to assess CD20 targeting: a pilot study in patients with relapsed/refractory diffuse large B cell lymphoma[J]. PLoS One, 2017, 12: e0169828. doi:  10.1371/journal.pone.0169828
    [12] Biabani Ardakani J, Akhlaghi M, Nikkholgh B, et al. Targeting and imaging of HER2 overexpression tumor with a new peptide-based 68Ga-PET radiotracer[J]. Bioorg Chem, 2021, 106: 104474. doi:  10.1016/j.bioorg.2020.104474
    [13] Sun X, Xiao Z, Chen G, et al. A PET imaging approach for determining EGFR mutation status for improved lung cancer patient management[J]. Sci Transl Med, 2018, 10: eaan8840. doi:  10.1126/scitranslmed.aan8840
    [14] Read ED, Eu P, Little PJ, et al. The status of radioimmunotherapy in CD20+ non-Hodgkin's lymphoma[J]. Target Oncol, 2015, 10: 15-26. doi:  10.1007/s11523-014-0324-y
    [15] Niemeijer AN, Leung D, Huisman MC, et al. Whole body PD-1 and PD-L1 positron emission tomography in patients with non-small-cell lung cancer[J]. Nat Commun, 2018, 9: 4664. doi:  10.1038/s41467-018-07131-y
    [16] Xing Y, Chand G, Liu C, et al. Early phase I study of a 99mTc-labeled anti-programmed death ligand-1 (PD-L1) single-domain antibody in SPECT/CT assessment of PD-L1 expression in non-small cell lung cancer[J]. J Nucl Med, 2019, 60: 1213-1220. doi:  10.2967/jnumed.118.224170
    [17] Hernot S, van Manen L, Debie P, et al. Latest develop-ments in molecular tracers for fluorescence image-guided cancer surgery[J]. Lancet Oncol, 2019, 20: e354-e367.
    [18] He K, Chi C, Li D, et al. Resection and survival data from a clinical trial of glioblastoma multiforme-specific IRDye800-BBN fluorescence-guided surgery[J]. Bioeng Transl Med, 2020, 6: e10182.
  • 加载中
表(1)
计量
  • 文章访问数:  248
  • HTML全文浏览量:  15
  • PDF下载量:  102
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-05
  • 录用日期:  2021-12-30
  • 网络出版日期:  2022-01-12
  • 刊出日期:  2022-03-30

目录

    /

    返回文章
    返回