留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

医学大数据与人工智能标准体系:现状、机遇与挑战

张知非 杨郑鑫 黄运有 詹剑锋

张知非, 杨郑鑫, 黄运有, 詹剑锋. 医学大数据与人工智能标准体系:现状、机遇与挑战[J]. 协和医学杂志, 2021, 12(5): 614-620. doi: 10.12290/xhyxzz.2021-0472
引用本文: 张知非, 杨郑鑫, 黄运有, 詹剑锋. 医学大数据与人工智能标准体系:现状、机遇与挑战[J]. 协和医学杂志, 2021, 12(5): 614-620. doi: 10.12290/xhyxzz.2021-0472
ZHANG Zhifei, YANG Zhengxin, HUANG Yunyou, ZHAN Jianfeng. Big Medical Data and Medical AI Standards: Status Quo, Opportunities and Challenges[J]. Medical Journal of Peking Union Medical College Hospital, 2021, 12(5): 614-620. doi: 10.12290/xhyxzz.2021-0472
Citation: ZHANG Zhifei, YANG Zhengxin, HUANG Yunyou, ZHAN Jianfeng. Big Medical Data and Medical AI Standards: Status Quo, Opportunities and Challenges[J]. Medical Journal of Peking Union Medical College Hospital, 2021, 12(5): 614-620. doi: 10.12290/xhyxzz.2021-0472

医学大数据与人工智能标准体系:现状、机遇与挑战

doi: 10.12290/xhyxzz.2021-0472
基金项目: 

中国科学院标准化试点项目:智能芯片与系统标准研究 BZ201800001

详细信息
    通讯作者:

    黄运有  电话:0773-8285764,E-mail: huangyunyou@gxnu.edu.cn

    詹剑锋  电话:010-62601166,E-mail: zhanjianfeng@ict.ac.cn

  • 中图分类号: R3; TP18

Big Medical Data and Medical AI Standards: Status Quo, Opportunities and Challenges

Funds: 

Standardization Research Project of Chinese Academy of Sciences BZ201800001

More Information
  • 摘要: 医学大数据和人工智能(artificial intelligence,AI)在提升医学资源利用率和服务质量方面具有极大的潜力,但同时也在隐私保护和技术风险方面带来挑战。标准是构造、评价和应用新技术的共识和规范,医学大数据和AI在临床的应用迫切需要制订数据、系统、计量标准以及应用和评价新技术的行为规范。本文定义了医学大数据与AI标准的内涵,包括数据相关标准、公共数据集、测试基准、行为规范;总结了医学大数据和AI标准的现状、潜在问题及挑战;在展望医学大数据与AI发展前景的同时,提出了结合大数据/AI增强的系统和医学科学大装置的系统新架构。
    作者贡献:张知非负责撰写、修订论文;杨郑鑫和黄运有负责检索文献,撰写论文;詹剑锋提出选题思路,并撰写、审校论文。
    利益冲突:
  • 图  1  医学大数据与人工智能标准的内涵

    图  2  人工智能在临床医学中的应用[14-20]

    图  3  医学大数据与AI信息系统新架构

  • [1] Working Group 2 of the Joint Committee for Guides in Metrology. International vocabulary of metrology-Basic and general concepts and associated terms (VIM)[S]. [2021-06-08]. https://www.bipm.org/documents/20126/2071204/JCGM_200_2012.pdf.
    [2] McAllister J. Standards, Specifications, Protocols, Methods, and Codes[EB/OL]. (2020-09-16)[2021-06-08]. https://uark.libguides.com/Standards/Home.
    [3] International Organization for Standardization. Standardization and related activities-General vocabulary[S]. [2021-06-08]. https://www.iso.org/obp/ui/#iso:std:iso-iec:guide:2:ed-8:v1:en.
    [4] Bidgood WD Jr, Horii SC, Prior FW, et al. Understanding and using DICOM, the data interchange standard for biomedical imaging[J]. J Am Med Inform Assoc, 1997, 4: 199-212. doi:  10.1136/jamia.1997.0040199
    [5] Wikipedia. Algorithm[EB/OL]. (2021-06-12)[2021-07-05]. https://en.wikipedia.org/wiki/Algorithm.
    [6] Price WN, Cohen IG. Privacy in the age of medical big data[J]. Nat Med, 2019, 25: 37-43. doi:  10.1038/s41591-018-0272-7
    [7] World Health Organization. International Statistical Classification of Diseases and Related Health Problems 10th Revision[EB/OL]. [2021-06-08]. https://icd.who.int/browse10/2010/en.
    [8] LOINC. What LOINC is[EB/OL]. [2021-08-20]. https://loinc.org/get-started/what-loinc-is/.
    [9] SNOMED. SNOMED CT[EB/OL]. [2021-08-20]. https://www.snomed.org/snomed-ct/why-snomed-ct.
    [10] George WB, Stan H, Wesley R. HL7 V3 Message Development Framework[EB/OL]. (1999-11)[2021-08-20]. http://www.hl7.org/documentcenter/public/wg/mnm/Mdf99.pdf.
    [11] 国家卫生计生委. 关于发布《电子病历共享文档规范第1部分: 病历概要》等57项卫生行业标准的通告[EB/OL]. (2016-09-12)[2021-08-20]. http://www.nhc.gov.cn/fzs/s7852d/201609/37f11aacca5a49c2ad0984c8fc7a2873.shtml.
    [12] 中国医师协会. 关于发布《肝胆疾病标准数据规范》3项团体标准的公告[EB/OL]. (2020-10-10)[2021-08-20]. http://www.ttbz.org.cn/UploadFiles/StandardFpdFile/20201018233559493.pdf.
    [13] Rivera SC, Liu X, Chan AW, et al. Guidelines for clinical trial protocols for interventions involving artificial intelli-gence: the SPIRIT-AI extension[J]. Nat Med, 2020, 26: 1351-1363. doi:  10.1038/s41591-020-1037-7
    [14] Rajpurkar P, Irvin J, Ball RL, et al. Deep learning for chest radiograph diagnosis: A retrospective comparison of the CheXNeXt algorithm to practicing radiologists[J]. PLoS Med, 2018, 15: e1002686. doi:  10.1371/journal.pmed.1002686
    [15] De Fauw J, Ledsam JR, Romera-Paredes B, et al. Clinically applicable deep learning for diagnosis and referral in retinal disease[J]. Nat Med, 2018, 24: 1342-1350. doi:  10.1038/s41591-018-0107-6
    [16] Yim J, Chopra R, Spitz T, et al. Predicting conversion to wet age-related macular degeneration using deep learning[J]. Nat Med, 2020, 26: 892-899. doi:  10.1038/s41591-020-0867-7
    [17] Kim H, Goo JM, Lee KH, et al. Preoperative CT-based deep learning model for predicting disease-free survival in patients with lung adenocarcinomas[J]. Radiology, 2020, 296: 216-224. doi:  10.1148/radiol.2020192764
    [18] McKinney SM, Sieniek M, Godbole V, et al. International evaluation of an AI system for breast cancer screening[J]. Nature, 2020, 577: 89-94. doi:  10.1038/s41586-019-1799-6
    [19] Wang P, Berzin TM, Glissen Brown JR, et al. Real-time automatic detection system increases colonoscopic polyp and adenoma detection rates: a prospective randomised controlled study[J]. Gut, 2019, 68: 1813-1819. doi:  10.1136/gutjnl-2018-317500
    [20] Tyler NS, Mosquera-Lopez CM, Wilson LM, et al. An artificial intelligence decision support system for the management of type 1 diabetes[J]. Nat Metab, 2020, 2: 612-619. doi:  10.1038/s42255-020-0212-y
    [21] 国家药品监督管理局医疗器械技术审评中心. 关于发布深度学习辅助决策医疗器械软件审评要点的通告[EB/OL]. (2019-07-03)[2021-07-05]. https://www.cmde.org.cn/CL0004/19360.html.
    [22] Food and Drug Administration. Artificial Intelligence and Machine Learning (AI/ML) Software as a Medical Device Action Plan[EB/OL]. (2021-01-12)[2021-07-05]. https://www.fda.gov/medical-devices/software-medical-device-samd/artificial-intelligence-and-machine-learning-soft-ware-medical-device.
    [23] Petersen RC, Aisen PS, Beckett LA, et al. Alzheimer's Disease Neuroimaging Initiative (ADNI): clinical characterization[J]. Neurology, 2010, 74: 201-209. doi:  10.1212/WNL.0b013e3181cb3e25
    [24] Johnson A, Pollard T, Shen L, et al. MIMIC-Ⅲ, a freely accessible critical care database[J]. Sci Data, 2016, 3: 160035. doi:  10.1038/sdata.2016.35
    [25] Tomczak K, Czerwinska P, Wiznerowicz M. The Cancer Genome Atlas (TCGA): an immeasurable source of knowledge[J]. Contemp Oncol (Pozn), 2019, 19: A68-A77. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.809.8713&rep=rep1&type=pdf
    [26] Allen GI, Amoroso N, Anghel C, et al. Crowdsourced estimation of cognitive decline and resilience in Alzheimer's disease[J]. Alzheimers Dement, 2016, 12: 645-653. doi:  10.1016/j.jalz.2016.02.006
    [27] Christov SC, Avrunin GS, Clarke LA, et al. A benchmark for evaluating software engineering techniques for improving medical processes[C]. Proceedings of the 2010 ICSE Workshop on Software Engineering in Health Care, 2010: 50-56.
    [28] Shamir L, Orlov N, Mark Eckley D, et al. ⅡCBU 2008: a proposed benchmark suite for biological image analysis[J]. Med Biol Eng Comput, 2008, 46: 943-947. doi:  10.1007/s11517-008-0380-5
    [29] Zhang Z, Gao W, Zhang F, et al. Landscape of Big Medical Data: A Pragmatic Survey on Prioritized Tasks[J]. IEEE Access, 2019, 7: 15590-15611. doi:  10.1109/ACCESS.2019.2891948
    [30] Liu X, Rivera SC, Moher D, et al. Reporting guidelines for clinical trial reports for interventions involving artificial intelligence: the CONSORT-AI extension[J]. Nat Med, 2020, 26: 1364-1374. doi:  10.1038/s41591-020-1034-x
    [31] Act A. Health insurance portability and accountability act of 1996[J]. Public law, 1996, 104: 191. http://www.ehcca.com/presentations/hipaa6/foerster.pdf
    [32] 国家卫生健康委员会. 关于印发国家健康医疗大数据标准、安全和服务管理办法(试行)的通知[EB/OL]. (2018-09-14)[2021-06-08]. http://www.nhc.gov.cn/mohwsbwstjxxzx/s8553/201809/f346909ef17e41499ab766890a34bff7.shtml.
    [33] 全国人民代表大会. 中华人民共和国数据安全法[EB/OL]. (2021-06-10)[2021-07-02]. http://www.npc.gov.cn/npc/c30834/202106/7c9af12f51334a73b56d7938f99a788a.shtml.
    [34] 国务院. 中华人民共和国人类遗传资源管理条列[EB/OL]. (2019-06-10)[2021-07-02]. http://www.gov.cn/zhengce/content/2019-06/10/content_5398829.htm.
    [35] Liang Y, Guo Y, Gong Y, et al. FLBench: A Benchmark Suite for Federated Learning[C]. Intelligent Computing and Block Chain: First BenchCouncil International Federated Conferences, 2020: 166.
    [36] Rajkomar A, Oren E, Chen K, et al. Scalable and accurate deep learning with electronic health records[J]. NPJ Digit Med, 2018, 1: 1-10. doi:  10.1038/s41746-017-0008-y
    [37] Huang Y, Zhang Z, Wang N, et al. A new direction to promote the implementation of artificial intelligence in natural clinical settings[J]. arXiv preprint arXiv: 1905.02940. http://arxiv.org/abs/1905.02940
    [38] Nagendran M, Chen Y, Lovejoy CA, et al. Artificial intelligence versus clinicians: systematic review of design, reporting standards, and claims of deep learning studies[J]. BMJ, 2020, 368: m689. http://www.bmj.com/cgi/content/abstract/368/mar23_22/m689
    [39] Desai AN. Artificial Intelligence: Promise, Pitfalls, and Perspective[J]. JAMA, 2020, 323: 2448-2449. doi:  10.1001/jama.2020.8737
    [40] Parikh RB, Obermeyer Z, Navathe AS. Regulation of predictive analytics in medicine[J]. Science, 2019, 363: 810-812. doi:  10.1126/science.aaw0029
    [41] Chen H, Compton S, Hsiao O. DiabeticLink: A Health Big Data System for Patient Empowerment and Personalized Healthcare[C]. International Conference on Smart Health, 2013: 71-83.
    [42] Abràmoff MD, Lavin PT, Michele B, et al. Pivotal trial of an autonomous AI-based diagnostic system for detection of diabetic retinopathy in primary care offices[J]. NPJ Digit Med, 2018, 1: 1-8. doi:  10.1038/s41746-017-0008-y
    [43] Wang ZQ, Zhou YJ, Zhao YX, et al. Diagnostic accuracy of a deep learning approach to calculate FFR from coronary CT angiography[J]. J Geriatr Cardiol, 2019, 16: 42-48. http://med.wanfangdata.com.cn/Paper/Detail/PeriodicalPaper_lnxzbxzz-e201901006
  • 加载中
图(3)
计量
  • 文章访问数:  125
  • HTML全文浏览量:  11
  • PDF下载量:  115
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-15
  • 录用日期:  2021-08-23
  • 网络出版日期:  2021-09-16
  • 刊出日期:  2021-10-12

目录

    /

    返回文章
    返回