[1]
|
Lai CC, Shih TP, Ko WC, et al. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease-2019 (COVID-19): The epidemic and the challenges[J]. Int J Antimicrob Agents, 2020, 55: 105924. doi: 10.1016/j.ijantimicag.2020.105924 |
[2]
|
Sathish V, Martin YN, Prakash YS. Sex steroid signaling: implications for lung diseases[J]. Pharmacol Ther, 2015, 150: 94-108. doi: 10.1016/j.pharmthera.2015.01.007 |
[3]
|
Jin JM, Bai P, He W, et al. Gender Differences in Patients With COVID-19: Focus on Severity and Mortality[J]. Front Public Health, 2020, 8: 152. doi: 10.3389/fpubh.2020.00152 |
[4]
|
Alghamdi IG, Hussain, Ⅱ, Almalki SS, et al. The pattern of Middle East respiratory syndrome coronavirus in Saudi Arabia: a descriptive epidemiological analysis of data from the Saudi Ministry of Health[J]. Int J Gen Med, 2014, 7: 417-423. http://pubmedcentralcanada.ca/pmcc/articles/PMC4149400/ |
[5]
|
Leung GM, Hedley AJ, Ho LM, et al. The epidemiology of severe acute respiratory syndrome in the 2003 Hong Kong epidemic: an analysis of all 1755 patients[J]. Ann Intern Med, 2004, 141: 662-673. doi: 10.7326/0003-4819-141-9-200411020-00006 |
[6]
|
Hamming I, Timens W, Bulthuis ML, et al. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis[J]. J Pathol, 2004, 203: 631-637. doi: 10.1002/path.1570 |
[7]
|
Xu X, Chen P, Wang J, et al. Evolution of the novel coronavirus from the ongoing Wuhan outbreak and modeling of its spike protein for risk of human transmission[J]. Sci China Life Sci, 2020, 63: 457-460. doi: 10.1007/s11427-020-1637-5 |
[8]
|
Zhang X, Li S, Niu S. ACE2 and COVID-19 and the resulting ARDS[J]. Postgrad Med J, 2020, 96: 403-407. doi: 10.1136/postgradmedj-2020-137935 |
[9]
|
Zhao Y, Zhao ZX, Wang YJ, et al. Single-Cell RNA Expres-sion Profiling of ACE2, the Receptor of SARS-CoV-2[J]. Am J Respir Crit Care Med, 2020, 202: 756-759. doi: 10.1164/rccm.202001-0179LE |
[10]
|
Ding Y, Wang H, Shen H, et al. The clinical pathology of severe acute respiratory syndrome (SARS): a report from China[J]. J Pathol, 2003, 200: 282-289. doi: 10.1002/path.1440 |
[11]
|
李红芳, 郭彦青, 王元, 等. 一半是天使, 一半是魔鬼: ACE2在新型冠状病毒肺炎易感性和急性肺损伤肺保护中的辩证关系[J]. 临床心血管病杂志, 2020, 36: 400-405. https://www.cnki.com.cn/Article/CJFDTOTAL-LCXB202005002.htm
Li HF, Guo YQ, Wang Y, et al. Angel goes beside satan: the bipuasic role of ACE2 on the susceptibility and virulence of severe acute respiratory syndrome coronavirus-2 and the potentially protective efficiency against acute lung injury[J]. Lin Chuang Xin Xue Guan Bing Za Zhi, 2020, 36: 400-405. https://www.cnki.com.cn/Article/CJFDTOTAL-LCXB202005002.htm |
[12]
|
Pons S, Fodil S, Azoulay E, et al. The vascular endothelium: the cornerstone of organ dysfunction in severe SARS-CoV-2 infection[J]. Crit Care, 2020, 24: 353. doi: 10.1186/s13054-020-03062-7 |
[13]
|
Shi X, Guan Y, Jiang S, et al. Renin-angiotensin system inhibitor attenuates oxidative stress induced human coronary artery endothelial cell dysfunction via the PI3K/AKT/mTOR pathway[J]. Arch Med Sci, 2019, 15: 152-164. doi: 10.5114/aoms.2018.74026 |
[14]
|
Bansal R, Gubbi S, Muniyappa R. Metabolic Syndrome and COVID 19: Endocrine-Immune-Vascular Interactions Shapes Clinical Course[J]. Endocrinology, 2020, 161: bqaa112. doi: 10.1210/endocr/bqaa112 |
[15]
|
Franks TJ, Chong PY, Chui P, et al. Lung pathology of severe acute respiratory syndrome (SARS): a study of 8 autopsy cases from Singapore[J]. Hum Pathol, 2003, 34: 743-748. doi: 10.1016/S0046-8177(03)00367-8 |
[16]
|
Wong CK, Lam CW, Wu AK, et al. Plasma inflammatory cytokines and chemokines in severe acute respiratory syndrome[J]. Clin Exp Immunol, 2004, 136: 95-103. doi: 10.1111/j.1365-2249.2004.02415.x |
[17]
|
Channappanavar R, Fehr AR, Vijay R, et al. Dysregulated Type I Interferon and Inflammatory Monocyte-Macrophage Responses Cause Lethal Pneumonia in SARS-CoV-Infected Mice[J]. Cell Host Microbe, 2016, 19: 181-193. doi: 10.1016/j.chom.2016.01.007 |
[18]
|
Guan WJ, Liang WH, Zhao Y, et al. Comorbidity and its impact on 1590 patients with COVID-19 in China: a nationwide analysis[J]. Eur Respir J, 2020, 55: 2000547. doi: 10.1183/13993003.00547-2020 |
[19]
|
Kovats S. Estrogen receptors regulate innate immune cells and signaling pathways[J]. Cell Immunol, 2015, 294: 63-69. doi: 10.1016/j.cellimm.2015.01.018 |
[20]
|
Smith EP, Boyd J, Frank GR, et al. Estrogen Resistance Caused by a Mutation in the Estrogen-Receptor Gene in a Man[J]. N Engl J Med, 1994, 331: 1056-1061. doi: 10.1056/NEJM199410203311604 |
[21]
|
秦川, 鲍琳琳, 邓巍, 等. 血管紧张素转换酶2在SARS-CoV感染中的功能(第2部分)--SARS-CoV在ACE2表达细胞中的复制和ACE2基因敲除对小鼠SARS-CoV感染的保护作用[J]. 中国比较医学杂志, 2005, 15: 330-334. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDX200506002.htm
Qin C, Bao LL, Deng W, et al. The Role of Converting Enzyme 2 in SARS-CoV Infection (Part Ⅱ)--The Replication of SARS-CoV in Murine Fibroblasts Expressing Human ACE2 and the Protective Effect of ACE2 Knockout on SARS Infection in Mice[J]. Zhongguo Bi Jiao Yi Xue Za Zhi, 2005, 15: 330-334. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDX200506002.htm |
[22]
|
Rey-Parra GJ, Vadivel A, Coltan L, et al. Angiotensin converting enzyme 2 abrogates bleomycin-induced lung injury[J]. J Mol Med (Berl), 2012, 90: 637-647. doi: 10.1007/s00109-012-0859-2 |
[23]
|
Lin CI, Tsai CH, Sun YL, et al. Instillation of particulate matter 2.5 induced acute lung injury and attenuated the injury recovery in ACE2 knockout mice[J]. Int J Biol Sci, 2018, 14: 253-265. doi: 10.7150/ijbs.23489 |
[24]
|
Imai Y, Kuba K, Rao S, et al. Angiotensin-converting enzyme 2 protects from severe acute lung failure[J]. Nature, 2005, 436: 112-116. doi: 10.1038/nature03712 |
[25]
|
Brosnihan KB, Hodgin JB, Smithies O, et al. Tissue-specific regulation of ACE/ACE2 and AT1/AT2 receptor gene expression by oestrogen in apolipoprotein E/oestrogen receptor-alpha knock-out mice[J]. Exp Physiol, 2008, 93: 658-664. doi: 10.1113/expphysiol.2007.041806 |
[26]
|
Stelzig KE, Canepa-Escaro F, Schiliro M, et al. Estrogen regulates the expression of SARS-CoV-2 receptor ACE2 in differentiated airway epithelial cells[J]. Am J Physiol Lung Cell Mol Physiol, 2020, 318: L1280-L1281. doi: 10.1152/ajplung.00153.2020 |
[27]
|
Feng Q, Li L, Wang X. Identifying Pathways and Networks Associated With the SARS-CoV-2 Cell Receptor ACE2 Based on Gene Expression Profiles in Normal and SARS-CoV-2-Infected Human Tissues[J]. Front Mol Biosci, 2020, 7: 568954. doi: 10.3389/fmolb.2020.568954 |
[28]
|
Vermillion MS, Ursin RL, Attreed SE, et al. Estriol Reduces Pulmonary Immune Cell Recruitment and Inflammation to Protect Female Mice From Severe Influenza[J]. Endocrinology, 2018, 159: 3306-3320. doi: 10.1210/en.2018-00486 |
[29]
|
Channappanavar R, Fett C, Mack M, et al. Sex-Based Differences in Susceptibility to Severe Acute Respiratory Syndrome Coronavirus Infection[J]. J Immunol, 2017, 198: 4046-4053. doi: 10.4049/jimmunol.1601896 |
[30]
|
Robinson DP, Lorenzo ME, Jian W, et al. Elevated 17beta-estradiol protects females from influenza A virus pathogenesis by suppressing inflammatory responses[J]. PLoS Pathog, 2011, 7: e1002149. doi: 10.1371/journal.ppat.1002149 |
[31]
|
Nguyen DC, Masseoud F, Lu X, et al. 17beta-Estradiol restores antibody responses to an influenza vaccine in a postmenopausal mouse model[J]. Vaccine, 2011, 29: 2515-2518. doi: 10.1016/j.vaccine.2011.01.080 |
[32]
|
Pazos MA, Kraus TA, Munoz-Fontela C, et al. Estrogen mediates innate and adaptive immune alterations to influenza infection in pregnant mice[J]. PLoS One, 2012, 7: e40502. doi: 10.1371/journal.pone.0040502 |
[33]
|
Robinson DP, Hall OJ, Nilles TL, et al. 17beta-estradiol protects females against influenza by recruiting neutrophils and increasing virus-specific CD8 T cell responses in the lungs[J]. J Virol, 2014, 88: 4711-4720. doi: 10.1128/JVI.02081-13 |
[34]
|
Raberg L, Sim D, Read AF. Disentangling genetic variation for resistance and tolerance to infectious diseases in animals[J]. Science, 2007, 318: 812-814. doi: 10.1126/science.1148526 |
[35]
|
Sims AC, Baric RS, Yount B, et al. Severe acute respiratory syndrome coronavirus infection of human ciliated airway epithelia: role of ciliated cells in viral spread in the conducting airways of the lungs[J]. J Virol, 2005, 79: 15511-15524. doi: 10.1128/JVI.79.24.15511-15524.2005 |
[36]
|
Peretz J, Pekosz A, Lane AP, et al. Estrogenic compounds reduce influenza A virus replication in primary human nasal epithelial cells derived from female, but not male, donors[J]. Am J Physiol Lung Cell Mol Physiol, 2016, 310: L415-L425. doi: 10.1152/ajplung.00398.2015 |
[37]
|
Hui KPY, Cheung MC, Perera R, et al. Tropism, replica-tion competence, and innate immune responses of the coronavirus SARS-CoV-2 in human respiratory tract and conjunctiva: an analysis in ex-vivo and in-vitro cultures[J]. Lancet Respir Med, 2020, 8: 687-695. doi: 10.1016/S2213-2600(20)30193-4 |
[38]
|
Scarpitta AM, Sinagra D. Polycystic ovary syndrome: an endocrine and metabolic disease[J]. Gynecol Endocrinol, 2000, 14: 392-395. doi: 10.3109/09513590009167709 |
[39]
|
Mauvais-Jarvis F, Manson JE, Stevenson JC, et al. Menopausal Hormone Therapy and Type 2 Diabetes Prevention: Evidence, Mechanisms, and Clinical Implications[J]. Endocr Rev, 2017, 38: 173-188. doi: 10.1210/er.2016-1146 |
[40]
|
Heine PA, Taylor JA, Iwamoto GA, et al. Increased adipose tissue in male and female estrogen receptor-alpha knockout mice[J]. Proc Natl Acad Sci U S A, 2000, 97: 12729-12734. doi: 10.1073/pnas.97.23.12729 |
[41]
|
Srivaratharajah K, Abramson BL. Hypertension in meno-pausal women: the effect and role of estrogen[J]. Menopause, 2019, 26: 428-430. doi: 10.1097/GME.0000000000001304 |