留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

脑肿瘤患者术后认知功能障碍

王雅宁 阳天睿 马文斌

王雅宁, 阳天睿, 马文斌. 脑肿瘤患者术后认知功能障碍[J]. 协和医学杂志, 2021, 12(1): 99-104. doi: 10.12290/xhyxzz.20190082
引用本文: 王雅宁, 阳天睿, 马文斌. 脑肿瘤患者术后认知功能障碍[J]. 协和医学杂志, 2021, 12(1): 99-104. doi: 10.12290/xhyxzz.20190082
WANG Ya-ning, YANG Tian-rui, MA Wen-bin. Postoperative Cognitive Dysfunction in Patients with Brain Tumor[J]. Medical Journal of Peking Union Medical College Hospital, 2021, 12(1): 99-104. doi: 10.12290/xhyxzz.20190082
Citation: WANG Ya-ning, YANG Tian-rui, MA Wen-bin. Postoperative Cognitive Dysfunction in Patients with Brain Tumor[J]. Medical Journal of Peking Union Medical College Hospital, 2021, 12(1): 99-104. doi: 10.12290/xhyxzz.20190082

脑肿瘤患者术后认知功能障碍

doi: 10.12290/xhyxzz.20190082
基金项目: 

中国医学科学院医学与健康科技创新工程 2016-I2M-2-001

清华大学-北京协和医院合作专项项目 2019ZLH101

详细信息
    通讯作者:

    马文斌 电话:010-69152530,E-mail:mawb2001@hotmail.com

  • 中图分类号: R739.41

Postoperative Cognitive Dysfunction in Patients with Brain Tumor

Funds: 

The Chinese Academy of Medical Sciences Innovation Fund for Medical Sciences 2016-I2M-2-001

Tsinghua University-Peking Union Medical College Hospital Initiative Scientific Research Program 2019ZLH101

More Information
  • 摘要: 随着对脑肿瘤治疗方案研究的日益深入以及患者对生存质量要求的不断提高,作为术后常见并发症之一,术后认知功能障碍逐渐受到临床关注。目前认为,包括炎症因子、活性氧、高迁移率族蛋白B1等在内的细胞因子表达异常是其发生的分子机制。由于认知功能的抽象性,为了更好地对术后认知功能障碍进行评定,临床设计了一系列量表,但不同患者如何选用适宜的量表尚无定论。关于术后认知功能障碍的治疗,主要包括药物治疗和非药物治疗,但目前尚处于研究的初级阶段,缺乏临床指南。本文对脑肿瘤患者术后认知功能障碍的原因、分子机制、评估方式以及治疗方案进行了总结,以期为临床提供借鉴。
    作者贡献:王雅宁进行文章结构构思,查阅文献并撰写论文;阳天睿参与论文撰写;马文斌明确论文方向并指导论文修改。
    利益冲突  无
  • [1] Jiang T, Mao Y, Ma W, et al. CGCG clinical practice guidelines for the management of adult diffuse gliomas[J]. Cancer Lett, 2016, 375:263-273. doi:  10.1016/j.canlet.2016.01.024
    [2] Cagney DN, Martin AM, Catalano PJ, et al. Incidence and prognosis of patients with brain metastases at diagnosis of systemic malignancy: a population-based study[J]. Neuro Oncol, 2017, 19:1511-1521. doi:  10.1093/neuonc/nox077
    [3] Kayl AE, Meyers CA. Does brain tumor histology influence cognitive function?[J]. Neuro Oncol, 2003, 5:255-260. doi:  10.1215/S1152851703000012
    [4] Satoer D, Visch-Brink E, Dirven C, Vincent A. Glioma surgery in eloquent areas: can we preserve cognition?[J]. Acta Neurochirurgica, 2015, 158:35-50.
    [5] Hendriks EJ, Habets EJJ, Taphoorn MJB, et al. Linking late cognitive outcome with glioma surgery location using resection cavity maps[J]. Hum Brain Mapp, 2018, 39:2064-2074. doi:  10.1002/hbm.23986
    [6] Flechl B, Sax C, Ackerl M, et al. The course of quality of life and neurocognition in newly diagnosed patients with glioblastoma[J]. Radiother Oncol, 2017, 125:228-233. doi:  10.1016/j.radonc.2017.07.027
    [7] Silverstein JH. Cognition, anesthesia, and surgery[J]. Int Anesthesiol Clin, 2014, 52:42-57.
    [8] Moller JT, Cluitmans P, Rasmussen LS, et al. Long-term postoperative cognitive dysfunction in the elderly: ISPOCD1 study[J]. Lancet, 1998, 351:857-861. doi:  10.1016/S0140-6736(97)07382-0
    [9] Steinmetz J, Rasmussen LS. Anesthesia and the risk of dementia in the elderly[J]. Presse Med, 2018, 47:e45-e51. doi:  10.1016/j.lpm.2018.03.013
    [10] Steinmetz J, Christensen KB, Lund T, et al. Long-term Consequences of Postoperative Cognitive Dysfunction[J]. Anesthesiology, 2009, 110:548-555. doi:  10.1097/ALN.0b013e318195b569
    [11] Hudetz JA, Gandhi SD, Iqbal Z, et al. Elevated postopera-tive inflammatory biomarkers are associated with short- and medium-term cognitive dysfunction after coronary artery surgery[J]. J Anesth, 2011, 25:1-9. doi:  10.1007/s00540-010-1042-y
    [12] Skvarc DR, Berk M, Byrne LK, et al. Postoperative Cognitive Dysfunction: An exploration of the inflammatory hypothesis and novel therapies[J]. Neurosci Biobehav Rev, 2018, 84:116-133. doi:  10.1016/j.neubiorev.2017.11.011
    [13] Peng L, Xu L, Ouyang W. Role of peripheral inflammatory markers in postoperative cognitive dysfunction (POCD): a meta-analysis[J]. PLoS One, 2013, 8:e79624. doi:  10.1371/journal.pone.0079624
    [14] Donato R, Heizmann CW. S100B Protein in the Nervous System and Cardiovascular Apparatus in Normal and Pathological Conditions[J]. Cardiovasc Psychiatry Neurol, 2010, 2010:929712.
    [15] Adami C, Bianchi R, Pula G, Donato R. S100B-stimulated NO production by BV-2 microglia is independent of RAGE transducing activity but dependent on RAGE extracellular domain[J]. Biochim Biophys Acta, 2004, 1742:169-177. doi:  10.1016/j.bbamcr.2004.09.008
    [16] Harmon D, Eustace N, Ghori K, et al. Plasma concentra-tions of nitric oxide products and cognitive dysfunction following coronary artery bypass surgery[J]. Eur J Anaesthesiol, 2005, 22:269-276. doi:  10.1017/S0265021505000451
    [17] Vacas S, Degos V, Tracey KJ, et al. High-mobility group box 1 protein initiates postoperative cognitive decline by engaging bone marrow-derived macrophages[J]. Anesthesiology, 2014, 120:1160-1167. doi:  10.1097/ALN.0000000000000045
    [18] Li YC, Xi CH, An YF, et al. Perioperative inflammatory response and protein S-100beta concentrations-relationship with post-operative cognitive dysfunction in elderly patients[J]. Acta Anaesthesiol Scand, 2012, 56:595-600. doi:  10.1111/j.1399-6576.2011.02616.x
    [19] Hansson L, Lithell H, Skoog I, et al. Study on COgnition and Prognosis in the Elderly (SCOPE): baseline characteristics[J]. Blood Press, 2000, 9:146-151. doi:  10.1080/080370500453483999
    [20] Skoog I, Lithell H, Hansson L, et al. Effect of baseline cognitive function and antihypertensive treatment on cognitive and cardiovascular outcomes: Study on COgnition and Prognosis in the Elderly (SCOPE)[J]. Am J Hypertens, 2005, 18:1052-1059. doi:  10.1016/j.amjhyper.2005.02.013
    [21] Nasreddine ZS, Phillips NA, Bedirian V, et al. The Montreal Cognitive Assessment, MoCA: a brief screening tool for mild cognitive impairment[J]. J Am Geriatr Soc, 2005, 53:695-699. doi:  10.1111/j.1532-5415.2005.53221.x
    [22] Hoops S, Nazem S, Siderowf AD, et al. Validity of the MoCA and MMSE in the detection of MCI and dementia in Parkinson disease[J]. Neurology, 2009, 73:1738-1745. doi:  10.1212/WNL.0b013e3181c34b47
    [23] Brown PD, Buckner JC, O'Fallon JR, et al. Effects of radiotherapy on cognitive function in patients with low-grade glioma measured by the folstein mini-mental state examination[J]. J Clin Oncol, 2003, 21:2519-2524. doi:  10.1200/JCO.2003.04.172
    [24] Rambeau A, Beauplet B, Laviec H, et al. Prospective comparison of the Montreal Cognitive Assessment (MoCA) and the Mini Mental State Examination (MMSE) in geriatric oncology[J]. J Geriatr Oncol, 2019, 10:235-240. doi:  10.1016/j.jgo.2018.08.003
    [25] 马文斌, 王裕, 王樑, 等.中国老年胶质瘤患者术前评估专家共识(2019)[J].协和医学杂志, 2019, 10:326-335. doi:  10.3969/j.issn.1674-9081.2019.04.004

    Ma WB, Wang Y, Wang L, et al. Expert Consensus on the Preoperative Geriatric Assessments of Elderly Patients with Glioma(2019)[J]. Xie He Yi Xue Za Zhi, 2019, 10:326-335. doi:  10.3969/j.issn.1674-9081.2019.04.004
    [26] Bommakanti K, Somayajula S, Suvarna A, et al. Pre-operative and post-operative cognitive deficits in patients with supratentorial meningiomas[J]. Clin Neurol Neurosurg, 2016, 143:150-158. doi:  10.1016/j.clineuro.2016.02.033
    [27] Hoffermann M, Bruckmann L, Mahdy Ali K, et al. Pre-and postoperative neurocognitive deficits in brain tumor patients assessed by a computer based screening test[J]. J Clin Neurosci, 2017, 36:31-36. doi:  10.1016/j.jocn.2016.10.030
    [28] Gehring K, Aaronson NK, Taphoorn MJ, et al. Interventions for cognitive deficits in patients with a brain tumor: an update[J]. Expert Rev Anticancer Ther, 2010, 10:1779-1795. doi:  10.1586/era.10.163
    [29] Hassler MR, Elandt K, Preusser M, et al. Neurocognitive training in patients with high-grade glioma: a pilot study[J]. J Neurooncol, 2010, 97:109-115. doi:  10.1007/s11060-009-0006-2
    [30] Gehring K, Sitskoorn MM, Gundy CM, et al. Cognitive rehabilitation in patients with gliomas: a randomized, controlled trial[J]. J Clin Oncol, 2009, 27:3712-3722. doi:  10.1200/JCO.2008.20.5765
    [31] Butler JM Jr, Case LD, Atkins J, et al. A phase Ⅲ, double-blind, placebo-controlled prospective randomized clinical trial of d-threo-methylphenidate HCl in brain tumor patients receiving radiation therapy[J]. Int J Radiat Oncol Biol Phys, 2007, 69:1496-1501. doi:  10.1016/j.ijrobp.2007.05.076
    [32] Page BR, Shaw EG, Lu L, et al. Phase Ⅱ double-blind placebo-controlled randomized study of armodafinil for brain radiation-induced fatigue[J]. Neurooncology, 2015, 17:1393-1401.
    [33] Birks JS, Harvey RJ. Donepezil for dementia due to Alzheimer's disease[J]. Cochrane Database Syst Rev, 2018, 6:Cd001190.
    [34] Howard R, McShane R, Lindesay J, et al. Donepezil and memantine for moderate-to-severe Alzheimer's disease[J]. New Engl J Med, 2012, 366:893-903. doi:  10.1056/NEJMoa1106668
    [35] Grön G, Kirstein M, Thielscher A, et al. Cholinergic enhancement of episodic memory in healthy young adults[J]. Psychopharmacology, 2005, 182:170-179. doi:  10.1007/s00213-005-0043-2
    [36] Ceravolo R, Volterrani D, Tognoni G, et al. Cerebral perfusional effects of cholinesterase inhibitors in Alzheimer disease[J]. Clin Neuropharmacol, 2004, 27:166-170. doi:  10.1097/01.wnf.0000138636.42121.45
    [37] Shaw EG, Rosdhal R, D'Agostino RB Jr, et al. Phase Ⅱ study of donepezil in irradiated brain tumor patients: effect on cognitive function, mood, and quality of life[J]. J Clin Oncol, 2006, 24:1415-1420. doi:  10.1200/JCO.2005.03.3001
    [38] Rapp SR, Case LD, Peiffer A, et al. Donepezil for Irradiated Brain Tumor Survivors: A Phase Ⅲ Randomized Placebo-Controlled Clinical Trial[J]. J Clin Oncol, 2015, 33:1653-1659. doi:  10.1200/JCO.2014.58.4508
    [39] Danysz W, Parsons CG, Karcz-Kubicha M, et al. GlycineB antagonists as potential therapeutic agents. Previous hopes and present reality[J]. Amino Acids, 1998, 14:235-239. doi:  10.1007/BF01345268
    [40] Chen HS, Pellegrini JW, Aggarwal SK, et al. Open-channel block of N-methyl-D-aspartate (NMDA) responses by memantine: therapeutic advantage against NMDA receptor-mediated neurotoxicity[J]. J Neurosci, 1992, 12:4427-4436. doi:  10.1523/JNEUROSCI.12-11-04427.1992
    [41] Chen HS, Lipton SA. Mechanism of memantine block of NMDA-activated channels in rat retinal ganglion cells: uncompetitive antagonism[J]. J physiol, 1997, 499:27-46. doi:  10.1113/jphysiol.1997.sp021909
    [42] Brown PD, Pugh S, Laack NN, et al. Memantine for the prevention of cognitive dysfunction in patients receiving whole-brain radiotherapy: a randomized, double-blind, placebo-controlled trial[J]. Neurooncology, 2013, 15:1429-1437.
  • 加载中
计量
  • 文章访问数:  429
  • HTML全文浏览量:  189
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-05-05
  • 录用日期:  2020-06-20
  • 刊出日期:  2021-01-30

目录

    /

    返回文章
    返回