[1]
|
Jiang T, Mao Y, Ma W, et al. CGCG clinical practice guidelines for the management of adult diffuse gliomas[J]. Cancer Lett, 2016, 375:263-273. doi: 10.1016/j.canlet.2016.01.024 |
[2]
|
Cagney DN, Martin AM, Catalano PJ, et al. Incidence and prognosis of patients with brain metastases at diagnosis of systemic malignancy: a population-based study[J]. Neuro Oncol, 2017, 19:1511-1521. doi: 10.1093/neuonc/nox077 |
[3]
|
Kayl AE, Meyers CA. Does brain tumor histology influence cognitive function?[J]. Neuro Oncol, 2003, 5:255-260. doi: 10.1215/S1152851703000012 |
[4]
|
Satoer D, Visch-Brink E, Dirven C, Vincent A. Glioma surgery in eloquent areas: can we preserve cognition?[J]. Acta Neurochirurgica, 2015, 158:35-50. |
[5]
|
Hendriks EJ, Habets EJJ, Taphoorn MJB, et al. Linking late cognitive outcome with glioma surgery location using resection cavity maps[J]. Hum Brain Mapp, 2018, 39:2064-2074. doi: 10.1002/hbm.23986 |
[6]
|
Flechl B, Sax C, Ackerl M, et al. The course of quality of life and neurocognition in newly diagnosed patients with glioblastoma[J]. Radiother Oncol, 2017, 125:228-233. doi: 10.1016/j.radonc.2017.07.027 |
[7]
|
Silverstein JH. Cognition, anesthesia, and surgery[J]. Int Anesthesiol Clin, 2014, 52:42-57. |
[8]
|
Moller JT, Cluitmans P, Rasmussen LS, et al. Long-term postoperative cognitive dysfunction in the elderly: ISPOCD1 study[J]. Lancet, 1998, 351:857-861. doi: 10.1016/S0140-6736(97)07382-0 |
[9]
|
Steinmetz J, Rasmussen LS. Anesthesia and the risk of dementia in the elderly[J]. Presse Med, 2018, 47:e45-e51. doi: 10.1016/j.lpm.2018.03.013 |
[10]
|
Steinmetz J, Christensen KB, Lund T, et al. Long-term Consequences of Postoperative Cognitive Dysfunction[J]. Anesthesiology, 2009, 110:548-555. doi: 10.1097/ALN.0b013e318195b569 |
[11]
|
Hudetz JA, Gandhi SD, Iqbal Z, et al. Elevated postopera-tive inflammatory biomarkers are associated with short- and medium-term cognitive dysfunction after coronary artery surgery[J]. J Anesth, 2011, 25:1-9. doi: 10.1007/s00540-010-1042-y |
[12]
|
Skvarc DR, Berk M, Byrne LK, et al. Postoperative Cognitive Dysfunction: An exploration of the inflammatory hypothesis and novel therapies[J]. Neurosci Biobehav Rev, 2018, 84:116-133. doi: 10.1016/j.neubiorev.2017.11.011 |
[13]
|
Peng L, Xu L, Ouyang W. Role of peripheral inflammatory markers in postoperative cognitive dysfunction (POCD): a meta-analysis[J]. PLoS One, 2013, 8:e79624. doi: 10.1371/journal.pone.0079624 |
[14]
|
Donato R, Heizmann CW. S100B Protein in the Nervous System and Cardiovascular Apparatus in Normal and Pathological Conditions[J]. Cardiovasc Psychiatry Neurol, 2010, 2010:929712. |
[15]
|
Adami C, Bianchi R, Pula G, Donato R. S100B-stimulated NO production by BV-2 microglia is independent of RAGE transducing activity but dependent on RAGE extracellular domain[J]. Biochim Biophys Acta, 2004, 1742:169-177. doi: 10.1016/j.bbamcr.2004.09.008 |
[16]
|
Harmon D, Eustace N, Ghori K, et al. Plasma concentra-tions of nitric oxide products and cognitive dysfunction following coronary artery bypass surgery[J]. Eur J Anaesthesiol, 2005, 22:269-276. doi: 10.1017/S0265021505000451 |
[17]
|
Vacas S, Degos V, Tracey KJ, et al. High-mobility group box 1 protein initiates postoperative cognitive decline by engaging bone marrow-derived macrophages[J]. Anesthesiology, 2014, 120:1160-1167. doi: 10.1097/ALN.0000000000000045 |
[18]
|
Li YC, Xi CH, An YF, et al. Perioperative inflammatory response and protein S-100beta concentrations-relationship with post-operative cognitive dysfunction in elderly patients[J]. Acta Anaesthesiol Scand, 2012, 56:595-600. doi: 10.1111/j.1399-6576.2011.02616.x |
[19]
|
Hansson L, Lithell H, Skoog I, et al. Study on COgnition and Prognosis in the Elderly (SCOPE): baseline characteristics[J]. Blood Press, 2000, 9:146-151. doi: 10.1080/080370500453483999 |
[20]
|
Skoog I, Lithell H, Hansson L, et al. Effect of baseline cognitive function and antihypertensive treatment on cognitive and cardiovascular outcomes: Study on COgnition and Prognosis in the Elderly (SCOPE)[J]. Am J Hypertens, 2005, 18:1052-1059. doi: 10.1016/j.amjhyper.2005.02.013 |
[21]
|
Nasreddine ZS, Phillips NA, Bedirian V, et al. The Montreal Cognitive Assessment, MoCA: a brief screening tool for mild cognitive impairment[J]. J Am Geriatr Soc, 2005, 53:695-699. doi: 10.1111/j.1532-5415.2005.53221.x |
[22]
|
Hoops S, Nazem S, Siderowf AD, et al. Validity of the MoCA and MMSE in the detection of MCI and dementia in Parkinson disease[J]. Neurology, 2009, 73:1738-1745. doi: 10.1212/WNL.0b013e3181c34b47 |
[23]
|
Brown PD, Buckner JC, O'Fallon JR, et al. Effects of radiotherapy on cognitive function in patients with low-grade glioma measured by the folstein mini-mental state examination[J]. J Clin Oncol, 2003, 21:2519-2524. doi: 10.1200/JCO.2003.04.172 |
[24]
|
Rambeau A, Beauplet B, Laviec H, et al. Prospective comparison of the Montreal Cognitive Assessment (MoCA) and the Mini Mental State Examination (MMSE) in geriatric oncology[J]. J Geriatr Oncol, 2019, 10:235-240. doi: 10.1016/j.jgo.2018.08.003 |
[25]
|
马文斌, 王裕, 王樑, 等.中国老年胶质瘤患者术前评估专家共识(2019)[J].协和医学杂志, 2019, 10:326-335. doi: 10.3969/j.issn.1674-9081.2019.04.004
Ma WB, Wang Y, Wang L, et al. Expert Consensus on the Preoperative Geriatric Assessments of Elderly Patients with Glioma(2019)[J]. Xie He Yi Xue Za Zhi, 2019, 10:326-335. doi: 10.3969/j.issn.1674-9081.2019.04.004 |
[26]
|
Bommakanti K, Somayajula S, Suvarna A, et al. Pre-operative and post-operative cognitive deficits in patients with supratentorial meningiomas[J]. Clin Neurol Neurosurg, 2016, 143:150-158. doi: 10.1016/j.clineuro.2016.02.033 |
[27]
|
Hoffermann M, Bruckmann L, Mahdy Ali K, et al. Pre-and postoperative neurocognitive deficits in brain tumor patients assessed by a computer based screening test[J]. J Clin Neurosci, 2017, 36:31-36. doi: 10.1016/j.jocn.2016.10.030 |
[28]
|
Gehring K, Aaronson NK, Taphoorn MJ, et al. Interventions for cognitive deficits in patients with a brain tumor: an update[J]. Expert Rev Anticancer Ther, 2010, 10:1779-1795. doi: 10.1586/era.10.163 |
[29]
|
Hassler MR, Elandt K, Preusser M, et al. Neurocognitive training in patients with high-grade glioma: a pilot study[J]. J Neurooncol, 2010, 97:109-115. doi: 10.1007/s11060-009-0006-2 |
[30]
|
Gehring K, Sitskoorn MM, Gundy CM, et al. Cognitive rehabilitation in patients with gliomas: a randomized, controlled trial[J]. J Clin Oncol, 2009, 27:3712-3722. doi: 10.1200/JCO.2008.20.5765 |
[31]
|
Butler JM Jr, Case LD, Atkins J, et al. A phase Ⅲ, double-blind, placebo-controlled prospective randomized clinical trial of d-threo-methylphenidate HCl in brain tumor patients receiving radiation therapy[J]. Int J Radiat Oncol Biol Phys, 2007, 69:1496-1501. doi: 10.1016/j.ijrobp.2007.05.076 |
[32]
|
Page BR, Shaw EG, Lu L, et al. Phase Ⅱ double-blind placebo-controlled randomized study of armodafinil for brain radiation-induced fatigue[J]. Neurooncology, 2015, 17:1393-1401. |
[33]
|
Birks JS, Harvey RJ. Donepezil for dementia due to Alzheimer's disease[J]. Cochrane Database Syst Rev, 2018, 6:Cd001190. |
[34]
|
Howard R, McShane R, Lindesay J, et al. Donepezil and memantine for moderate-to-severe Alzheimer's disease[J]. New Engl J Med, 2012, 366:893-903. doi: 10.1056/NEJMoa1106668 |
[35]
|
Grön G, Kirstein M, Thielscher A, et al. Cholinergic enhancement of episodic memory in healthy young adults[J]. Psychopharmacology, 2005, 182:170-179. doi: 10.1007/s00213-005-0043-2 |
[36]
|
Ceravolo R, Volterrani D, Tognoni G, et al. Cerebral perfusional effects of cholinesterase inhibitors in Alzheimer disease[J]. Clin Neuropharmacol, 2004, 27:166-170. doi: 10.1097/01.wnf.0000138636.42121.45 |
[37]
|
Shaw EG, Rosdhal R, D'Agostino RB Jr, et al. Phase Ⅱ study of donepezil in irradiated brain tumor patients: effect on cognitive function, mood, and quality of life[J]. J Clin Oncol, 2006, 24:1415-1420. doi: 10.1200/JCO.2005.03.3001 |
[38]
|
Rapp SR, Case LD, Peiffer A, et al. Donepezil for Irradiated Brain Tumor Survivors: A Phase Ⅲ Randomized Placebo-Controlled Clinical Trial[J]. J Clin Oncol, 2015, 33:1653-1659. doi: 10.1200/JCO.2014.58.4508 |
[39]
|
Danysz W, Parsons CG, Karcz-Kubicha M, et al. GlycineB antagonists as potential therapeutic agents. Previous hopes and present reality[J]. Amino Acids, 1998, 14:235-239. doi: 10.1007/BF01345268 |
[40]
|
Chen HS, Pellegrini JW, Aggarwal SK, et al. Open-channel block of N-methyl-D-aspartate (NMDA) responses by memantine: therapeutic advantage against NMDA receptor-mediated neurotoxicity[J]. J Neurosci, 1992, 12:4427-4436. doi: 10.1523/JNEUROSCI.12-11-04427.1992 |
[41]
|
Chen HS, Lipton SA. Mechanism of memantine block of NMDA-activated channels in rat retinal ganglion cells: uncompetitive antagonism[J]. J physiol, 1997, 499:27-46. doi: 10.1113/jphysiol.1997.sp021909 |
[42]
|
Brown PD, Pugh S, Laack NN, et al. Memantine for the prevention of cognitive dysfunction in patients receiving whole-brain radiotherapy: a randomized, double-blind, placebo-controlled trial[J]. Neurooncology, 2013, 15:1429-1437. |