人工智能在全科医学中的应用:文献计量学分析

Artificial Intelligence in General Practice: A Bibliometric Analysis

  • 摘要:
    目的 运用文献计量学方法分析近20年来人工智能(artificial intelligence,AI)在全科医学中的应用现状、研究热点及变化趋势,以期为后续开展相关研究提供借鉴。
    方法 系统检索Web of Science核心合集数据库(Web of Science Core Collection, WoSCC),纳入发表时间为2004年1月1日—2024年12月31日期间AI在全科医学领域应用的相关英文文献。采用VOSviewer 1.6.19软件对国家/地区(发文量≥5篇)、作者(发文量≥3篇)进行共现分析,并采用Scimago Graphica 1.0.46软件绘制国家/地区之间的合作网络图;采用CiteSpace 6.2.R2软件对机构(发文量≥5篇)进行共现分析,并对关键词进行共现和聚类分析。
    结果 共获得394篇相关文献(原创性研究307篇,综述87篇)。发文量整体呈逐渐增长趋势,尤其2018年以来显著增加。美国和英国分别是该领域发文量(81篇,20.56%)、总被引频次(2077次)最多的国家,英国伦敦大学是发文量(20篇,5.08%)最多的机构,韦仕敦大学的Kueper是成果产出(6篇,1.52%)最多的作者。J Med Int Res是收录该领域文献(12篇,3.05%)最多、总被引频次(317次)最高的期刊。高频关键词主要包括“diagnosis”(诊断,31次)、“management”(管理,29次)、“risk”(风险,28次)、“electronic health records”(电子健康档案,24次)和“care”(照护,23次)等,可分为7个聚类,归纳为4个热点话题。其中AI在全科医学健康管理、辅助诊断及医师培养方面的作用是该领域当前研究的核心,技术可接受度是面临的关键挑战。
    结论 全科医学领域在逐步引入AI技术,并从满足基础功能需求向提升个性化、智能化诊疗服务体验方向发展。未来可围绕提升全科医生和患者技术接受度方面加强国家/地区、机构间的合作与交流。

     

    Abstract:
    Objective To analyze the current status, research hotspots, and evolving trends in the application of artificial intelligence (AI) in general practice over the past two decades using bibliometric methods, thereby providing insights for future research.
    Methods A systematic search was conducted in the Web of Science Core Collection (WoSCC) to identify English-language literature on AI applications in general practice published between January 1, 2004, and December 31, 2024. VOSviewer 1.6.19 was used for co-occurrence analysis of countries/regions (≥5 publications) and authors (≥3 publications), while Scimago Graphica 1.0.46 was employed to visualize collaboration networks among countries/regions. CiteSpace 6.2.R2 was utilized for institutional co-occurrence analysis (≥5 publications), keyword co-occurrence, and clustering analysis.
    Results A total of 394 relevant articles were included (307 original research articles and 87 reviews). The annual publication output showed a gradual increase, with a notable surge after 2018. The United States and the United Kingdom ranked first in terms of publication volume (81 articles, 20.56%) and total citations (2077 citations), respectively. The University of London was the most prolific institution (20 articles, 5.08%), while Kueper from Western University was the most productive author (6 articles, 1.52%). Journal of Medical Internet Research had the highest number of publications (12 articles, 3.05%) and citations (317 citations) in this field. High-frequency keywords included "diagnosis" (31 occurrences), "management" (29), "risk" (28), "electronic health records" (24), and "care" (23), which were categorized into 7 clusters and further summarized into 4 major research themes. AI applications in health management, diagnostic assistance, and general practitioner training emerged as core research areas, while technological acceptability remained a key challenge.
    Conclusions AI technologies are being progressively integrated into general practice, shifting from fulfilling basic functional needs toward enhancing personalized and intelligent healthcare experiences. Future research should focus on improving AI acceptance among general practitioners and patients through strengthened international and institutional collaboration.

     

/

返回文章
返回