Expert Consensus on Polymyxin Antimicrobial Susceptibility Testing and Clinical Interpretation
-
摘要: 多黏菌素是耐药革兰阴性杆菌的重要治疗药物。2020年美国临床和实验室标准协会变更了多黏菌素药物敏感性折点,取消了多黏菌素敏感折点,仅报告中介(I≤2 mg/L)与耐药(R≥4 mg/L),而欧洲抗菌药物敏感性试验委员会则建议采用敏感(S≤2 mg/L)、耐药(R>2 mg/L)作为临床折点。多黏菌素药物敏感性试验的操作难度以及国际药物敏感性折点的不统一给国内临床实验室一线人员带来极大困扰。因此,如何精准开展多黏菌素药物敏感性检测,规范其报告解读是当前国内抗菌药物应用和抗感染领域亟待解决的问题。本共识对多黏菌素药物敏感性试验方法及结果进行规范解读,并提出相应建议。Abstract: Polymyxin was an important antimicrobial agent against resistant Gram-negative bacilli. In 2020, the American Clinical and Laboratory Standards Institute changed the clinical breakpoints of polymyxin, eliminating the "susceptible" interpretive category, and only reporting intermediate (I≤2 mg/L) and resistant(R≥4 mg/L) ones. However, the European Committee on Antimicrobial Susceptibility Testing recommended the use of susceptible (S≤2 mg/L), resistant (R > 2 mg/L) as the clinical breakpoints. The international disunity of clinical breakpoints of polymyxin brings great trouble to the domestic clinical staffs. Therefore, how to accurately carry out the susceptibility test of polymyxin and standardize the interpretation of its report is an urgent problem to be solved in the field of antibacterial drug application and anti-infection in China. To this end, we organized experts in related fields to normalize and interpret the susceptibility test of polymyxin and its results, and put forward corresponding suggestions of experts for reference.
-
Key words:
- polymyxin /
- drug sensitivity /
- clinical interpretation /
- expert consensus
利益冲突:无 -
表 1 多黏菌素不同药物敏感性试验方法的性能评价
方法和菌种 分析药物 根据BMD-MIC区分的菌株数(%) 性能评价(%) MIC≤2 mg/L MIC≥4 mg/L EA CA VME ME E-test 肠杆菌目 多黏菌素B[4] 220(95.7) 10(4.4) 95.6 99.1 20.0 0 肠杆菌目 多黏菌素B[5] 53(69.7) 23(30.3) 48.7 89.5 26.1 1.9 肠杆菌目 黏菌素[5] 51(67.1) 25(32.9) 75.0 92.1 12.0 5.9 肠杆菌目 黏菌素[6] 219(67.4) 106(32.6) 80.6 96.3 9.4 0.9 大肠埃希菌 黏菌素[6] 48(90.6) 5(9.4) 92.5 96.2 40.0 0 肺炎克雷伯菌 黏菌素[6] 126(61.2) 80(38.8) 79.8 99.0 1.6 2.5 阴沟肠杆菌 黏菌素[6] 23(59.0) 16(41.0) 72.2 87.2 25.0 4.3 铜绿假单胞菌 黏菌素[8] 78(100) 0(0) 79.5 93.6 - 6.4 鲍曼不动杆菌 黏菌素[7] 2(10) 18(90) 55.0 65.0 38.9 0 鲍曼不动杆菌 黏菌素[9] 42(100) 0(0) 11.9 100 - 0 鲍曼不动杆菌 多黏菌素B[9] 42(100) 0(0) 85.7 100 - 0 纸片扩散法 肠杆菌目 IE IE IE NA IE IE IE 铜绿假单胞菌 黏菌素[8] 78(100) 0(0) NA 100 - 0 鲍曼不动杆菌 IE IE IE NA IE IE IE BD Phoenix 肠杆菌目 黏菌素[5] 219(67.4) 106(32.6) 76.1 92.0 24.5 0 大肠埃希菌 黏菌素[5] 48(90.6) 5(9.4) - 98.1 20 0 肺炎克雷伯菌 黏菌素[5] 126(61.2) 80(38.8) - 96.1 10 0 阴沟肠杆菌 黏菌素[5] 23(59.0) 16(41.0) - 64.1 87.5 0 铜绿假单胞菌 IE IE IE IE IE IE IE 鲍曼不动杆菌 黏菌素[10] 88(75.2) 29(24.8) 91.5 88.9 41.4 1.1 Microscan 革兰阴性杆菌 黏菌素[11] 52(28.1) 133(71.9) IE 91.9 0.8 26.9 肠杆菌目 黏菌素[5] 44(57.9) 32(42.1) IE 88.2 4.0 15.8 肠杆菌目 黏菌素[11] 32(21.9) 114(78.1) IE 99.3 0 3.1 非发酵菌 黏菌素[11] 20(51.3) 19(48.7) IE 64.1 5.3 65.0 Vitek 2 肠杆菌目 黏菌素[5] 60(75.9) 16(24.1) 93.4 88.2 36.0 0 肠杆菌目 多黏菌素B[5] 47(61.8) 29(38.2) 96.1 94.7 3.7 6.1 肠杆菌目 黏菌素[6] 219(67.4) 106(32.6) 75.9 90.5 29.2 0 大肠埃希菌 黏菌素[6] 48(90.6) 5(9.4) - 94.3 60.0 0 肺炎克雷伯菌 黏菌素[6] 126(61.2) 80(38.8) 81.7 94.2 15.0 0 肺炎克雷伯菌 黏菌素[7] 1(2.4) 40(97.6) 75.6 100 0 0 阴沟肠杆菌 黏菌素[6] 23(59.0) 16(41.0) - 66.7 81.3 0 铜绿假单胞菌 IE IE IE IE IE IE IE 鲍曼不动杆菌 黏菌素[10] 88(75.2) 29(24.8) 88.9 89.7 37.9 1.1 鲍曼不动杆菌 黏菌素[9] 42(100) 0(0) 26.2 100 - 0 鲍曼不动杆菌 多黏菌素B[9] 42(100) 0(0) 57.1 100 - 0 琼脂稀释法 鲍曼不动杆菌 黏菌素[10] 88(75.2) 29(24.8) 93.2 87.2 3.4 15.9 鲍曼不动杆菌 黏菌素[9] 42(100) 0(0) 92.8 85.7 - 16.7 鲍曼不动杆菌 多黏菌素B[9] 42(100) 0(0) 76.2 100 - 0 黏菌素琼脂试验 肠杆菌目 黏菌素[12] 152(43.7) 196(56.3) 99.7 99.7 0.5 0 铜绿假单胞菌 黏菌素[12] 135(91.2) 13(8.8) 99.3 100 0 0 鲍曼不动杆菌 黏菌素[12] 60(45.8) 71(54.2) 88.5 92.3 14.3 0 黏菌素肉汤纸片洗脱试验 肠杆菌目 黏菌素[12] 152(43.7) 196(56.3) 94.3 98.6 2.5 0 铜绿假单胞菌 黏菌素[12] 135(91.2) 13(8.8) 96.6 99.3 0 0.7 鲍曼不动杆菌 黏菌素[12] 60(45.8) 71(54.2) 93.1 95.4 5.6 3.3 BMD-MIC:肉汤微量稀释法的最低抑菌浓度;MIC:最低抑菌浓度;EA:基本一致率;CA:分类一致率;VME:非常重大误差;ME:重大误差;-:数据无法计算;NA:不适用;IE:数据不足 菌种 美国CLSI 2019 (mg/L) 美国CLSI 2019 (mg/L) 美国CLSI 2020 (mg/L) EUCAST 2020 (mg/L) USCAST 2020 (mg/L)* 美国FDA 2020 (mg/L) 黏菌素 多黏菌素B 黏菌素或多黏菌素B 黏菌素 黏菌素或多黏菌素B 黏菌素或多黏菌素B S I R S I R I R S R ATU S R I R 肠杆菌目 - - - - - - ≤2 ≥4 ≤2 >2 - ≤2 ≥4 - - 铜绿假单胞菌 ≤2 - ≥4 ≤2 4 ≥8 ≤2 ≥4 ≤2 >2 4 ≤2 ≥4 Re# Re# 鲍曼不动杆菌 ≤2 - ≥4 ≤2 - ≥4 ≤2 ≥4 ≤2 >2 - ≤2 ≥4 N† N† CLSI:临床和实验室标准协会;EUCAST:欧洲抗菌药物敏感性试验委员会;USCAST:美国抗菌药物敏感性试验委员会;FDA:国家食品药品监督管理局;S:敏感(susceptible);I:中介(intermediate);R:耐药(resistant);ATU:技术不确定区(area of technical uncertainty);-:无数据;*对于黏菌素,该折点不推荐用于下呼吸道感染,对于多黏菌素B,该折点不推荐用于下呼吸道感染和下尿路感染;#已采纳美国CLSI M100的数据折点;†尚未采纳CLSI M100的数据折点 表 3 EUCAST公布的黏菌素对不同菌种的ECOFF值(截至2020年7月)[15]
菌种 ECOFF(mg/L) 观察数 大肠埃希菌 2.0 6014 产气克雷伯菌 2.0 266 产酸克雷伯菌 2.0 405 肺炎克雷伯菌 2.0 1805 阴沟肠杆菌 2.0 849 铜绿假单胞菌 4.0 19 482 鲍曼不动杆菌 2.0 2879 EUCAST:同表 2;ECOFF:流行病学折点 表 4 多黏菌素对不同革兰阴性杆菌的PK/PD(fAUC24 h/MIC)靶值
表 5 不同肾功能情况下CMS推荐给药剂量的PTA和CFR
给药方案 肺炎克雷伯菌 大肠埃希菌 PTA(%) CFR PTA(%) CFR MIC50为0.5 MIC90为2 MIC50、MIC90均为0.5 CrCl≥80 mL/min 150 mg, q12 h(EMA[19], FDA[20]) 92.7 64.4 85.4 92.7 90.4 180 mg, q12 h(Nation等[21]) 97.9 69.2 87.9 97.9 92.3 150 mg, q8 h(Rattanaumpawan等[22]) 98.7 79.7 92.0 98.7 95.1 CrCl 51~79 mL/min 114 mg, q12 h(美国FDA[20]) 96.0 72.0 89.9 96.0 94.1 150 mg, q12 h(EMA[19], Nation等[21]) 97.3 78.3 92.7 97.3 95.8 CrCl 30~50 mL/min 150 mg, q12 h(美国FDA[20]) 97.6 71.1 91.3 97.6 95.6 100 mg, q12 h (Rattanaumpawan等[22]) 98.9 85.7 95.7 98.9 97.9 110 mg, q12 h(Nation等[21]) 99.0 87.4 96.4 99.0 98.2 125 mg, q12 h(EMA[19]) 99.2 89.8 97.2 99.2 98.5 CrCl 11~29 mL/min 60 mg, q24 h(美国FDA[20]) 96.3 56.2 86.3 96.3 97.9 150 mg, q24 h(EMA[19], Rattanaumpawan等[22]) 99.7 89.4 97.4 99.7 99.6 180 mg, q24 h(Nation等[21]) 99.6 89.3 97.4 99.6 99.9 CrCl ≤10 mL/min 60 mg, q24 h(美国FDA[20]) 99.5 77.1 94.5 99.5 100 120 mg, q24 h(EMA[19]) 99.9 94.9 98.9 99.9 100 150 mg, q24 h(Nation等[21]) 100 97.4 99.5 100 100 CMS:黏菌素甲磺酸盐;MIC、FDA:同表 1;PTA:达标概率;CFR:累积响应百分率;CrCl:肌酐清除率;q12 h:每12小时使用1次;q24 h:每24小时使用1次;EMA:欧洲药品管理局 表 6 不同肾功能的囊性纤维患者在多黏菌素B给药方案下的PTA[24]
CrCl (mL/min) 病原菌MIC (mg/L) 不同多黏菌素B给药方案下的PTA(%) 1.5 mg/(kg·d) 2.0 mg/(kg·d) 2.5 mg/(kg·d) 3.0 mg/(kg·d) 负荷剂量
2.5 mg/kg+2.5 mg/(kg·d)34 0.031 25 100 100 100 100 100 0.062 5 100 100 100 100 100 0.125 100 100 100 100 100 0.25 99.3 99.8 99.9 99.9 100 0.5 19.0 64.0 97.0 99.3 99.8 1 0.1 1.8 3.0 7.6 19.5 2 0 0 0 0.1 1.7 105 0.031 25 100 100 100 100 100 0.062 5 100 100 100 100 100 0.125 96.0 99.0 100 100 100 0.25 69.0 84.0 92.0 96.0 99.0 0.5 15.0 38.0 57.9 70.0 81.0 1 0.1 0.2 7.0 15.0 35.0 2 0 0 0 0.1 1.7 178 0.031 25 100 100 100 100 100 0.062 5 100 100 100 100 100 0.125 74.0 97.0 99.0 100 100 0.25 15.0 32.0 56.0 78.0 94.0 0.5 1.0 4.0 8.0 15.0 27.0 1 0 0 0.6 1 0 2 0 0 0 0 0 MIC:同表 1;PTA、CrCl:同表 5 表 7 不同MIC和多黏菌素B推荐剂量下的PTA*[26]
剂量方案 患者体质量(kg) 不同MIC下的PTA(%) 0.125 mg/L 0.25 mg/L 0.5 mg/L 1 mg/L 2 mg/L 4 mg/L 8 mg/L 100 mg q12 h 50 100 100 100 39.1 2.0 0.2 0 75 100 100 99.9 24.7 1.1 0.1 0 110 100 100 94.3 16.5 0.8 0 0 1 mg/kg TBW q12 h 50 100 100 39.1 2.0 0.2 0 0 75 100 100 82.1 7.7 0.3 0 0 110 100 100 97.6 24.4 0.2 0.1 0 1.5 mg/kg TBW q12 h 50 100 100 93.5 10.7 0.3 0 0 75 100 100 99.7 40.2 2.1 0.1 0 110 100 100 100 74.7 7.6 0.3 0 2.5 mg/kg负荷剂量+100 mg q12 h 50 100 100 100 61.3 3.1 0.2 0 75 100 100 100 81.3 8.2 0.3 0 110 100 100 100 93.1 16.8 0.9 0 2.5 mg/kg负荷剂量+1.5 mg/kg TBW q12 h 50 100 100 100 45.0 2.0 0.2 0 75 100 100 100 85.5 9.0 0.3 0 110 100 100 100 98.2 26.8 1.5 0.1 MIC:同表 1;PTA、q12 h:同表 5;TBW:总体质量;*以AUC0~24/MIC达到50(mg·h)/L为达到有效暴露量的目标靶值 表 8 多黏菌素药物敏感性试验报告
病原菌 抗菌药物 MIC折点(mg/L)† 注释 敏感(S) 耐药(R) 肠杆菌目* 黏菌素或多黏菌素B# ≤2 ≥4 多黏菌素药物敏感性试验结果必须附加注释 铜绿假单胞菌 ≤2 ≥4= 鲍曼不动杆菌 ≤2 ≥4 MIC:同表 1;*在肠杆菌目中摩根菌科(包括变形杆菌属、摩根菌属、普罗威登菌属)和粘质沙雷菌等对多黏菌素天然耐药,无需测试多黏菌素的敏感性;#黏菌素和多黏菌素B的药物敏感性结果等效,测试一种药物可预测另一种药物的敏感性;†须使用可靠的方法检测多黏菌素类药物的MIC -
[1] Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing [M]. 30th Edition. USA: Wayne, 2020:38-48. [2] The European Committee on Antimicrobial Susceptibility Testing. Breakpoint tables for interpretation of MICs and zone diameters. Version 10.0, 2020[EB/OL].http://www.eucast.org. [3] Pogue JM, Jones RN, Bradley JS, et al. Polymyxin Susceptibility Testing and Interpretive Breakpoints: Recommenda-tions from the United States Committee on Antimicrobial Susceptibility Testing (USCAST) [J]. Antimicrob Agents Chemother, 2020, 64:e01495-19. [4] 李焕芹, 牛敏, 刘淑敏, 等. CRE对多黏菌素B的敏感性及两种检测方法的差异[J].中国感染控制杂志, 2019, 18:1059-1063. http://www.cnki.com.cn/Article/CJFDTotal-GRKZ201911012.htm [5] Chew KL, La MV, Lin RTP, et al. Colistin and Polymyxin B Susceptibility Testing for Carbapenem-Resistant and mcr-Positive Enterobacteriaceae: Comparison of Sensititre, MicroScan, Vitek 2, and Etest with Broth Microdilution [J]. J Clin Microbiol, 2017, 55:2609-2616. doi: 10.1128/JCM.00268-17 [6] Pfennigwerth N, Kaminski A, Korte-Berwanger M, et al. Evaluation of six commercial products for colistin suscepti-bility testing in Enterobacterales [J]. Clin Microbiol Infect, 2019, 25:1385-1389. doi: 10.1016/j.cmi.2019.03.017 [7] Dafopoulou K, Zarkotou O, Dimitroulia E, et al. Compara-tive Evaluation of Colistin Susceptibility Testing Methods among Carbapenem-Nonsusceptible Klebsiella pneumoniae and Acinetobacter baumannii Clinical Isolates [J]. Antimicrob Agents Chemother, 2015, 59:4625-4630. doi: 10.1128/AAC.00868-15 [8] van der Heijden IM, Levin AS, de Pedri EH, et al. Compari-son of disc diffusion, Etest and broth microdilution for testing susceptibility of carbapenem-resistant P.aeruginosa to polymy-xins [J]. Ann Clin Microbiol Antimicrob, 2007, 6:8. doi: 10.1186/1476-0711-6-8 [9] Singhal L, Sharma M, Verma S, et al. Comparative Evaluation of Broth Microdilution with Polystyrene and Glass-Coated Plates, Agar Dilution, E-Test, Vitek, and Disk Diffusion for Susceptibility Testing of Colistin and Polymyxin B on Carbapenem-Resistant Clinical Isolates of Acinetobacter baumannii [J]. Microb Drug Resist, 2018, 24:1082-1088. doi: 10.1089/mdr.2017.0251 [10] Vourli S, Dafopoulou K, Vrioni G, et al. Evaluation of two automated systems for colistin susceptibility testing of carbapenem-resistant Acinetobacter baumannii clinical isolates[J]. J Antimicrob Chemother, 2017, 72:2528-2530. doi: 10.1093/jac/dkx186 [11] Jayol A, Nordmann P, Andre C, et al. Evaluation of three broth microdilution systems to determine colistin susceptibility of Gram-negative bacilli [J]. J Antimicrob Chemother, 2018, 73: 1272-1278. doi: 10.1093/jac/dky012 [12] Humphries RM, Green DA, Schuetz AN, et al. Multicenter Evaluation of Colistin Broth Disk Elution and Colistin Agar Test: a Report from the Clinical and Laboratory Standards Institute [J]. J Clin Microbiol, 2019, 57:e01269-19. http://www.researchgate.net/publication/335751928_Multi-center_evaluation_of_colistin_broth_disk_elution_and_colistin_agar_test_a_report_from_the_Clinical_and_Laboratory_Standards_Institute [13] CLSI. Performance Standards for Antimicrobial Susceptibility Testing. 29th ed. CLSI supplement M100[S]. Pennsylvania: Clinical and Laboratory Standards Institute, 2019. [14] U.S. Food & Drug Administration. Antibacterial Suscepti-bility Test Interpretive Criteria[EB/OL].https://www.fda.gov/drugs/development-resources/antibacterial-susceptibility-test-interpretive-criteria. [15] European Committee on Antimicrobial Susceptibility Testing. The EUCAST Subcommittee on MIC distributions and ECOFFs[EB/OL]. https://mic.eucast.org/Eucast2/SearchController/search.jsp?action=performSearch&BeginIndex=0&Micdif=mic&NumberIndex=50&Antib=837&Specium=-1. [16] Cheah SE, Wang J, Nguyen VT, et al. New pharmacokinetic/pharmacodynamic studies of systemically administered colistin against Pseudomonas aeruginosa and Acinetobacter baumannii in mouse thigh and lung infection models: smaller response in lung infection [J]. J Antimicrob Chemother, 2015, 70:3291-3197. http://jac.oxfordjournals.org/content/70/12/3291 [17] Landersdorfer CB, Wang J, Wirth V, et al. Pharmaco-kinetics/pharmacodynamics of systemically administered polymy-xin B against Klebsiella pneumoniae in mouse thigh and lung infection models [J]. J Antimicrob Chemother, 2017, 73:462-468. http://europepmc.org/abstract/MED/29149294 [18] Tsuji BT, Pogue JM, Zavascki AP, et al. International Consensus Guidelines for the Optimal Use of the Polymyxins: Endorsed by the American College of Clinical Pharmacy (ACCP), European Society of Clinical Microbiology and Infectious Diseases (ESCMID), Infectious Diseases Society of America (IDSA), International Society for Anti-infective Pharmacology (ISAP), Society of Critical Care Medicine (SCCM), and Society of Infectious Diseases Pharmacists (SIDP) [J]. Pharmacotherapy, 2019, 39:10-39. doi: 10.1002/phar.2209 [19] European Medicines Agency Completes Review of Polymy-xin-based Medicines: RecommendationsIssued for Safe Use in Patients with Serious Infections Resistant to Standard Antibiotics[EB/OL].https://www.ema.europa.eu/en/news/european-medicines-agency-completes-review-polymyxin-based-medicines. [20] FDA Approved Drug Products. Label and Approval History for Coly-Mycin M, NDA 050108[EB/OL].https://www.access-data.fda.gov/drugsatfda_docs/label/2017/050108s033lbl.pdf. [21] Nation RL, Garonzik SM, Thamlikitkul V, et al. Dosing guidance for intravenous colistin in critically ill patients[J]. Clin Infect Dis, 2017, 64: 565-571. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=0d5bee86de1d1dbe12e95290957e1f43 [22] Rattanaumpawan P, Lorsutthitham J, Ungprasert P, et al. Randomized controlled trial of nebulized colistimethate sodium as adjunctive therapy of ventilator-associated pneumonia caused by Gram-negative bacteria[J]. J Antimicrob Chemother, 2010;65:2645-2649. doi: 10.1093/jac/dkq360 [23] Jitaree K, Sathirakul K, Houngsaitong J, et al. Pharmacokinetic/Pharmacodynamic (PK/PD) Simulation for Dosage Optimization of Colistin Against Carbapenem-Resistant Klebsiella pneumoniae and Carbapenem-Resistant Escherichia coli[J]. Antibiotics (Basel), 2019, 8:125. doi: 10.3390/antibiotics8030125 [24] Avedissian S, Miglis C, Kubin CJ, et al. Polymyxin B Pharmacokinetics in Adult Cystic Fibrosis Patients [J]. Pharmacotherapy, 2018, 38:730-738. doi: 10.1002/phar.2129 [25] Kalil AC, Metersky ML, Klompas M, et al. Management of Adults With Hospital-acquired and Ventilator-associated Pneumonia: 2016 Clinical Practice Guidelines by the Infectious Diseases Society of America and the American Thoracic Society [J]. Clin Infect Dis, 2016, 63:e61-e111. doi: 10.1093/cid/ciw353 [26] Miglis C, Rhodes NJ, Avedissian S, et al. Population Pharmacokinetics of Polymyxin B in Acutely Ⅲ Adult Patients [J]. Antimicrob Agents Chemother, 2018, 62:e01475-17. http://www.ncbi.nlm.nih.gov/pubmed/29311071 [27] 中国研究型医院学会危重医学专业委员会, 中国研究型医院学会感染性疾病循证与转化专业委员会.多黏菌素临床应用中国专家共识[J].中华危重病急救医学, 2019, 28:1218-1222. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgwzbjjyx201910003 [28] Medeiros GS, Rigatto MH, Falci DR, et al. Combination therapy with polymyxin B for carbapenemase-producing Klebsiella pneumoniae bloodstream infection [J]. Int J Antimicrob Agents, 2019, 53:152-157. doi: 10.1016/j.ijantimicag.2018.10.010 [29] Tumbarello M, Viale P, Viscoli C, et al. Predictors of Mortality in Bloodstream Infections Caused by Klebsiella pneumoniae Carbapenemase-Producing K. pneumoniae: Impor-tance of Combination Therapy [J]. Clin Infect Dis, 2012, 55:943-950. doi: 10.1093/cid/cis588 [30] Batirel A, Balkan II, Karabay O, et al. Comparison of colistin-carbapenem, colistin-sulbactam, and colistin plus other antibacterial agents for the treatment of extremely drug-resistant Acinetobacter baumannii bloodstream infections [J]. Eur J Clin Microbiol Infect Dis, 2014, 33:1311-1322. doi: 10.1007/s10096-014-2070-6 [31] Sirijatuphat R, Thamlikitkul V. Preliminary Study of Colistin versus Colistin plus Fosfomycin for Treatment of Carba-penem-Resistant Acinetobacter baumannii Infections [J]. Antimicrob Agents Ch, 2014, 58: 5598-5601. doi: 10.1128/AAC.02435-13 [32] Paul M, Daikos GL, Durante-Mangoni E, et al. Colistin alone versus colistin plus meropenem for treatment of severe infections caused by carbapenem-resistant Gram-negative bacteria: an open-label, randomised controlled trial [J]. Lancet Infect Dis, 2018, 18: 391-400. doi: 10.1016/S1473-3099(18)30099-9 [33] Abdellatif S, Trifi A, Daly F, et al. Efficacy and toxicity of aerosolised colistin in ventilator-associated pneumonia: a prospective, randomised trial [J]. Ann Intensive Care, 2016, 6:26. doi: 10.1186/s13613-016-0127-7 [34] Valachis A, Samonis G, Kofteridis DP. The Role of Aerosolized Colistin in the Treatment of Ventilator-Associated Pneumonia [J]. Crit Care Med, 2015, 43:527-533. doi: 10.1097/CCM.0000000000000771 [35] Vardakas KZ, Voulgaris GL, Samonis G, et al. Inhaled colistin monotherapy for respiratory tract infections in adults without cystic fibrosis: a systematic review and meta-analysis [J]. Int J Antimicrob Agents, 2018, 51:1-9. doi: 10.1016/j.ijantimicag.2017.05.016 [36] de Bonis P, Lofrese G, Scoppettuolo G, et al. Intraventricular versus intravenous colistin for the treatment of extensively drug resistant Acinetobacter baumannii meningitis [J]. Eur J Neurol, 2016, 23:68-75. doi: 10.1111/ene.12789 [37] Falagas ME, Bliziotis IA, Tam VH. Intraventricular or intrathecal use of polymyxins in patients with Gram-negative meningitis: a systematic review of the available evidence [J]. Int J Antimicrob Agents, 2007, 29:9-25. doi: 10.1016/j.ijantimicag.2006.08.024 [38] Couet W, Gregoire N, Gobin P, et al. Pharmacokinetics of colistin and colistimethate sodium after a single 80-mg intravenous dose of CMS in young healthy volunteers [J]. Clin Pharmacol Ther, 2011, 89:875-879. doi: 10.1038/clpt.2011.48 [39] Sorlí L, Luque S, Li J, et al. Colistin for the treatment of urinary tract infections caused by extremely drug-resistant Pseudomonas aeruginosa: Dose is critical [J]. J Infection, 2019, 79:253-261. doi: 10.1016/j.jinf.2019.06.011 [40] Liang Q, Huang M, Xu Z. Early use of polymyxin B reduces the mortality of carbapenem-resistant Klebsiella pneumoniae bloodstream infection [J]. Braz J Infect Dis, 2019, 23:60-65. doi: 10.1016/j.bjid.2018.12.004 [41] Rigatto MH, Falci DR, Lopes NT, et al. Clinical features and mortality of patients on renal replacement therapy receiving polymyxin B [J]. Int J Antimicrob Agents, 2016, 47:146-150. doi: 10.1016/j.ijantimicag.2015.11.007 [42] Ismail B, Shafei MN, Harun A, et al. Predictors of polymyxin B treatment failure in Gram-negative healthcare-associated infections among critically ill patients [J]. J Microbiol Immunol, 2018, 51:763-769. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=4c34483f319fad8c58f131002c7903d9 [43] Dickstein Y, Lellouche J, Ben DAM, et al. Treatment Outcomes of Colistin- and Carbapenem-resistant Acinetobacter baumannii Infections: An Exploratory Subgroup Analysis of a Randomized Clinical Trial [J]. Clin Infect Dis, 2019, 69:769-776. doi: 10.1093/cid/ciy988 [44] Mattos KPH, Gouvêa IR, Quintanilha JCF, et al. Polymyxin B clinical outcomes: A prospective study of patients undergoing intravenous treatment [J]. J Clin Pharm Ther, 2019, 44:415-419. doi: 10.1111/jcpt.12801 [45] Maniara BP, Healy LE, Doan T. Risk of Nephrotoxicity Associated With Nonrenally Adjusted Intravenous Polymyxin B Compared to Traditional Dosing [J]. J Pharm Pract, 2020, 33:287-292. doi: 10.1177/0897190018799261 [46] Sirijatuphat R, Limmahakhun S, Sirivatanauksorn V, et al. Preliminary Clinical Study of the Effect of Ascorbic Acid on Colistin-Associated Nephrotoxicity [J]. Antimicrob Agents Chemother, 2015, 59:3224-3232. doi: 10.1128/AAC.00280-15 [47] Liu Q, Li W, Feng Y, et al. Efficacy and safety of polymyxins for the treatment of Acinectobacter baumannii infection: a systematic review and meta-analysis [J]. PLoS One, 2014, 9:e98091. doi: 10.1371/journal.pone.0098091 [48] Pereira GH, Muller PR, Levin AS. Salvage treatment of pneumonia and initial treatment of tracheobronchitis caused by multidrug-resistant Gram-negative bacilli with inhaled polymyxin B [J]. Diagn Microbiol Infect Dis, 2007, 58:235-240. doi: 10.1016/j.diagmicrobio.2007.01.008 -

计量
- 文章访问数: 1262
- HTML全文浏览量: 377
- PDF下载量: 137
- 被引次数: 0