留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

光声成像技术及其在乳腺肿瘤诊断中的应用

唐天虹 刘思锐 王铭 张睿 杨萌 姜玉新

唐天虹, 刘思锐, 王铭, 张睿, 杨萌, 姜玉新. 光声成像技术及其在乳腺肿瘤诊断中的应用[J]. 协和医学杂志, 2021, 12(1): 92-98. doi: 10.3969/j.issn.1674-9081.20190250
引用本文: 唐天虹, 刘思锐, 王铭, 张睿, 杨萌, 姜玉新. 光声成像技术及其在乳腺肿瘤诊断中的应用[J]. 协和医学杂志, 2021, 12(1): 92-98. doi: 10.3969/j.issn.1674-9081.20190250
TANG Tian-hong, LIU Si-rui, WANG Ming, ZHANG Rui, YANG Meng, JIANG Yu-xin. Photoacoustic Imaging Technology and Its Clinical Application to Breast Tumors[J]. Medical Journal of Peking Union Medical College Hospital, 2021, 12(1): 92-98. doi: 10.3969/j.issn.1674-9081.20190250
Citation: TANG Tian-hong, LIU Si-rui, WANG Ming, ZHANG Rui, YANG Meng, JIANG Yu-xin. Photoacoustic Imaging Technology and Its Clinical Application to Breast Tumors[J]. Medical Journal of Peking Union Medical College Hospital, 2021, 12(1): 92-98. doi: 10.3969/j.issn.1674-9081.20190250

光声成像技术及其在乳腺肿瘤诊断中的应用

doi: 10.3969/j.issn.1674-9081.20190250
基金项目: 

国家自然科学基金 61971447

国家自然科学青年基金 81301268

国家国际科技合作专项项目 2015DFA30440

北京市自然科学基金杰出青年科学基金 JQ18023

北京市科技新星计划交叉学科合作计划 XXJC201812

北京市科技新星计划 Z131107000413063

详细信息
    通讯作者:

    杨萌  电话:010-69155491,E-mail:amengameng@hotmail.com

  • 中图分类号: R445; R737.9

Photoacoustic Imaging Technology and Its Clinical Application to Breast Tumors

More Information
  • 摘要: 光声成像作为一种新兴的生物医学成像技术, 以光声效应为成像基础, 兼备光学高对比度、超声高穿透度的优点,同时具有光谱信息获取能力,可进行功能成像,具有良好的临床应用前景。乳腺肿瘤是目前光声成像技术临床应用最广泛的领域,本文综述光声成像技术特点及其在乳腺肿瘤的临床应用现状,并对未来应用前景进行展望。
    利益冲突  无
  • 图  1  光声/超声双模态成像设备

    图  2  光声/超声双模态成像探头

    图  3  不同年龄段女性正常乳腺光声/超声双模态三维血管重建图

    A.55岁; B. 44岁; C.28岁

    图  4  一例乳腺癌患者彩色多普勒超声及光声/超声双模态成像

    A.彩色多普勒超声; B.光声/超声双模态:血氧饱和度; C.光声/超声双模态:波长750 nm; D.光声/超声双模态:波长830 nm

    表  1  乳腺肿瘤光声成像设备及其参数简介

    研发机构/团队 设备名称 分辨率 最大成像深度 扫描时间 参考文献
    荷兰特温特大学 TPAM 3.0 mm 60 mm 10 min [35]
    Seno Medical Imagio 0.5 mm 30 mm - [42]
    Kruger团队 PAM 0.42 mm 40 mm 12 s~3.2 min [49]
    京都大学/佳能联合研究中心 PAM-03 0.57 mm 30 mm 2~4 min [50]
    iThera Medical MSOT 250 μm 30 mm - [58]
    佛罗里达大学 FPAT 0.5 mm 56 mm - [62]
    汪立宏团队 SBH-PACT 255 μm 40 mm 15 s [63]
    北京协和医院超声医学科/迈瑞团队 手持式光声/超声设备 0.1~1 mm 30 mm 5~10 min 待发表
    TPAM:Twente光声乳腺镜; Imagio:手持式光声/超声多模态成像系统; PAM:光声乳腺成像系统; PAM-03:第三代光声乳腺成像系统; MSOT:多光谱光声层析成像系统; FPAT:功能性光声层析成像系统; SBH-PACT:单次屏气光声计算层析成像系统; -:未报道
    下载: 导出CSV
  • [1] Fan L, Strasser-Weippl K, Li JJ, et al. Breast cancer in China[J]. Lancet Oncol, 2014, 15: e279-e289. doi:  10.1016/S1470-2045(13)70567-9
    [2] Onega T, Beaber EF, Sprague BL, et al. Breast cancer screening in an era of personalized regimens: A conceptual model and National Cancer Institute initiative for risk-based and preference-based approaches at a population level[J]. Cancer, 2014, 120: 2955-2964. doi:  10.1002/cncr.28771
    [3] Pinsky RW, Helvie MA. Mammographic breast density: effect on imaging and breast cancer risk[J]. J Natl Compr Cancer Network, 2010, 8: 1157-1165. doi:  10.6004/jnccn.2010.0085
    [4] Freer PE. Mammographic breast density: impact on breast cancer risk and implications for screening[J]. Radiographics, 2015, 35: 302-315. doi:  10.1148/rg.352140106
    [5] Devolli-Disha E, Manxhuka-Kërliu S, Ymeri H, et al. Comparative accuracy of mammography and ultrasound in women with breast symptoms according to age and breast density[J]. Bosnian J Basic Med Sci, 2009, 9: 131. doi:  10.17305/bjbms.2009.2832
    [6] Hooley RJ, Scoutt LM, Philpotts LE. Breast ultrasonography: state of the art[J]. Radiology, 2013, 268: 642-659. doi:  10.1148/radiol.13121606
    [7] Abeyakoon O, Morscher S, Dalhaus N, et al. Optoacoustic Imaging Detects Hormone-Related Physiological Changes of Breast Parenchyma[J]. Ultraschall Med, 2019, 40: 757-763 doi:  10.1055/a-0628-6248
    [8] Bell AG. The production of sound by radiant energy[J]. Science, 1881, 2: 242-253.
    [9] Wang LV, Hu S. Photoacoustic tomography: in vivo imaging from organelles to organs[J]. Science, 2012, 335: 1458-1462. doi:  10.1126/science.1216210
    [10] Xu MH, Wang LV. Photoacoustic imaging in biomedicine[J]. Rev Sci Instrum, 2006, 77: 41101. doi:  10.1063/1.2195024
    [11] Zackrisson S, Van De Ven S, Gambhir SS. Light in and sound out: emerging translational strategies for photoacoustic imaging[J]. Cancer Res, 2014, 74: 979-1004. doi:  10.1158/0008-5472.CAN-13-2387
    [12] Valluru KS, Wilson KE, Willmann JURK. Photoacoustic imaging in oncology: translational preclinical and early clinical experience[J]. Radiology, 2016, 280: 332-349. doi:  10.1148/radiol.16151414
    [13] Beard P. Biomedical photoacoustic imaging[J]. Interface Focus, 2011, 1: 602-631. doi:  10.1098/rsfs.2011.0028
    [14] Manohar S, Razansky D. Photoacoustics: a historical review[J]. Adv Opt Photonics, 2016, 8: 586-617. doi:  10.1364/AOP.8.000586
    [15] Lutzweiler C, Razansky D. Optoacoustic imaging and tomography: reconstruction approaches and outstanding challenges in image performance and quantification[J]. Sensors, 2013, 13: 7345-7384. doi:  10.3390/s130607345
    [16] Mallidi S, Luke GP, Emelianov S. Photoacoustic imaging in cancer detection, diagnosis, and treatment guidance[J]. Trends Biotechnol, 2011, 29: 213-221. doi:  10.1016/j.tibtech.2011.01.006
    [17] Schellenberg MW, Hunt HK. Hand-held optoacoustic imaging: A review[J]. Photoacoustics, 2018, 11: 14-27. doi:  10.1016/j.pacs.2018.07.001
    [18] Upputuri PK, Sivasubramanian K, Mark CSK, et al. Recent developments in vascular imaging techniques in tissue engineering and regenerative medicine[J]. Biomed Res Int, 2015, 2015: 783983. doi:  10.1155/2015/783983
    [19] Raghunathan R, Singh M, Dickinson ME, et al. Optical coherence tomography for embryonic imaging: a review[J]. J Biomed Opt, 2016, 21: 50902.
    [20] Mondal PP, Dilipkumar S, Kavya M, et al. Developments in single and multi-photon fluorescence microscopy for high resolution imaging[J]. J Indian Inst Sci, 2013, 93: 15-34. http://www.ams.org/mathscinet-getitem?mr=3088553
    [21] 陶超, 殷杰, 刘晓峻.生物组织光声成像技术综述[J].数据采集与处理, 2015, 30: 289-298. https://www.cnki.com.cn/Article/CJFDTOTAL-SJCJ201502006.htm
    [22] Zhou Y, Wang DP, Zhang YM, et al. A phosphorus phthalocyanine formulation with intense absorbance at 1000 nm for deep optical imaging[J]. Theranostics, 2016, 6: 688. doi:  10.7150/thno.14555
    [23] Upputuri PK, Pramanik M. Recent advances toward preclinical and clinical translation of photoacoustic tomography: a review[J]. J Biomed Opt, 2016, 22: 41006. doi:  10.1117/1.JBO.22.4.041006
    [24] Schwarz M, Buehler A, Aguirre J, et al. Three-dimensional multispectral optoacoustic mesoscopy reveals melanin and blood oxygenation in human skin in vivo[J]. J Biophotonics, 2016, 9: 55-60. doi:  10.1002/jbio.201500247
    [25] Manohar S, Kharine A, Van Hespen JCG, et al. Photoacoustic mammography laboratory prototype: imaging of breast tissue phantoms[J]. J Biomed Opt, 2004, 9: 1172-1181. doi:  10.1117/1.1803548
    [26] Manohar S, Kharine A, van Hespen JCG, et al. The Twente Photoacoustic Mammoscope: system overview and perfor-mance[J]. Phys Med Biol, 2005, 50: 2543. doi:  10.1088/0031-9155/50/11/007
    [27] Manohar S, Vaartjes SE, van Hespen JC, et al. Initial results of in vivo non-invasive cancer imaging in the human breast using near-infrared photoacoustics[J]. Opt Express, 2007, 15: 12277-12285. doi:  10.1364/OE.15.012277
    [28] Piras D, Xia WF, Steenbergen W, et al. Photoacoustic imaging of the breast using the twente photoacoustic mammoscope: present status and future perspectives[J]. IEEE J Sel Top Quantum Electron, 2009, 16: 730-739.
    [29] Hilgerink MP, Hummel MJ, Manohar S, et al. Assessment of the added value of the Twente Photoacoustic Mammoscope in breast cancer diagnosis[J]. Med Devices (Auckl), 2011, 4: 107.
    [30] Heijblom M, Piras D, Xia W, et al. Visualizing breast cancer using the Twente photoacoustic mammoscope: what do we learn from twelve new patient measurements?[J]. Opt Express, 2012, 20: 11582-11597. doi:  10.1364/OE.20.011582
    [31] Heijblom M, Piras D, Xia W, et al. Imaging breast lesions using the Twente Photoacoustic Mammoscope: Ongoing clinical experience[C]//Photons Plus Ultrasound: Imaging and Sensing 2012. International Society for Optics and Photonics, 2012, 8223: 82230C.
    [32] Heijblom M, Piras D, Maartens E, et al. Appearance of breast cysts in planar geometry photoacoustic mammography using 1064-nm excitation[J]. J Biomed Opt, 2013, 18: 126009. doi:  10.1117/1.JBO.18.12.126009
    [33] Heijblom M, Steenbergen W, Manohar S. Clinical photoacoustic breast imaging: the twente experience[J]. IEEE Pulse, 2015, 6: 42-46.
    [34] Heijblom M, Piras D, Brinkhuis M, et al. Photoacoustic image patterns of breast carcinoma and comparisons with Magnetic Resonance Imaging and vascular stained histopathology[J]. Sci Rep, 2015, 5: 11778. doi:  10.1038/srep11778
    [35] Heijblom M, Piras D, van den Engh FM, et al. The state of the art in breast imaging using the Twente Photoacoustic Mammoscope: results from 31 measurements on malignancies[J]. Eur Radiol, 2016, 26: 3874-3887. doi:  10.1007/s00330-016-4240-7
    [36] Oraevsky AA, Jacques SL, Esenaliev RO, et al. Laser-based optoacoustic imaging in biological tissues[C]//Laser-Tissue Interaction V, Ultraviolet Radiation Hazards. International Society for Optics and Photonics, 1994, 2134: 122-128.
    [37] Kruger RA, Liu P. Photoacoustic ultrasound: Pulse production and detection in 0.5% Liposyn[J]. Med Phys, 1994, 21: 1179-1184. doi:  10.1118/1.597399
    [38] Oraevsky AA, Karabutov AA, Solomatin SV, et al. Laser optoacoustic imaging of breast cancer in vivo[C]//Biomedical Optoacoustics Ⅱ. International Society for Optics and Photonics, 2001, 4256: 6-15.
    [39] Ermilov SA, Khamapirad T, Conjusteau A, et al. Laser optoacoustic imaging system for detection of breast cancer[J]. J Biomed Opt, 2009, 14: 24007. doi:  10.1117/1.3086616
    [40] Ermilov SA, Fronheiser MP, Brecht HP, et al. Development of laser optoacoustic and ultrasonic imaging system for breast cancer utilizing handheld array probes[C]//Photons Plus Ultrasound: Imaging and Sensing 2009. International Society for Optics and Photonics, 2009, 7177: 717703.
    [41] Neuschler EI, Butler R, Young CA, et al. A pivotal study of optoacoustic imaging to diagnose benign and malignant breast masses: a new evaluation tool for radiologists[J]. Radiology, 2017, 287: 398-412. http://europepmc.org/abstract/MED/29178816
    [42] Menezes GLG, Pijnappel RM, Meeuwis C, et al. Downgrading of breast masses suspicious for cancer by using optoacoustic breast imaging[J]. Radiology, 2018, 288: 355-365. doi:  10.1148/radiol.2018170500
    [43] Menezes GLG, Mann RM, Meeuwis C, et al. Optoacoustic imaging of the breast: correlation with histopathology and histopathologic biomarkers[J]. Eur Radiol, 2019, 29: 6728-6740. doi:  10.1007/s00330-019-06262-0
    [44] Dogan BE, Menezes GLG, Butler RS, et al. Optoacoustic imaging and gray-scale US features of breast cancers: correlation with molecular subtypes[J]. Radiology, 2019, 292: 564-572. doi:  10.1148/radiol.2019182071
    [45] Kruger RA, Liu PY, Fang YR, et al. Photoacoustic ultrasound (PAUS)-reconstruction tomography[J]. Med Phys, 1995, 22: 1605-1609. doi:  10.1118/1.597429
    [46] Kruger RA, Miller KD, Reynolds HE, et al. Breast Cancer in Vivo: Contrast Enhancement with Thermoacoustic CT at 434 MHz-Feasibility Study[J]. Radiology, 2000, 216: 279-283. doi:  10.1148/radiology.216.1.r00jl30279
    [47] Kruger RA, Kiser WL, Reinecke DR, et al. Thermoacoustic Molecular Imaging of Small Animals[J]. Mol Imaging, 2003, 2: 113-123. doi:  10.1162/153535003322331993
    [48] Kruger RA, Lam RB, Reinecke DR, et al. Photoacoustic angiography of the breast[J]. Med Phys, 2010, 37: 6096-6100. doi:  10.1118/1.3497677
    [49] Kruger RA, Kuzmiak CM, Lam RB, et al. Dedicated 3D photoacoustic breast imaging[J]. Med Phys, 2013, 40: 113301. doi:  10.1118/1.4824317
    [50] Shiina T, Toi M, Yagi T. Development and clinical transla-tion of photoacoustic mammography[J]. Biomed Eng Lett, 2018, 8: 157-165. doi:  10.1007/s13534-018-0070-7
    [51] Fakhrejahani E, Torii M, Kitai T, et al. Clinical Report on the First Prototype of a Photoacoustic Tomography System with Dual Illumination for Breast Cancer Imaging[J]. PLoS One, 2015, 10: e0139113. doi:  10.1371/journal.pone.0139113
    [52] Asao Y, Hashizume Y, Suita T, et al. Photoacoustic mammography capable of simultaneously acquiring photoacoustic and ultrasound images[J]. J Biomed Opt, 2016, 21: 116009. doi:  10.1117/1.JBO.21.11.116009
    [53] Toi M, Asao Y, Matsumoto Y, et al. Visualization of tumor-related blood vessels in human breast by photoacoustic imaging system with a hemispherical detector array[J]. Sci Rep, 2017, 7: 41970. doi:  10.1038/srep41970
    [54] Yamaga I, Kawaguchi-Sakita N, Asao Y, et al. Vascular branching point counts using photoacoustic imaging in the superficial layer of the breast: a potential biomarker for breast cancer[J]. Photoacoustics, 2018, 11: 6-13. doi:  10.1016/j.pacs.2018.06.002
    [55] Taruttis A, Ntziachristos V. Advances in real-time multispectral optoacoustic imaging and its applications[J]. Nat Photonics, 2015, 9: 219. doi:  10.1038/nphoton.2015.29
    [56] Buehler A, Kacprowicz M, Taruttis A, et al. Real-time handheld multispectral optoacoustic imaging[J]. Opt Lett, 2013, 38: 1404-1406. doi:  10.1364/OL.38.001404
    [57] Diot G, Metz S, Noske A, et al. Multispectral optoacoustic tomography (MSOT) of human breast cancer[J]. Clin Cancer Res, 2017, 23: 6912-6922. doi:  10.1158/1078-0432.CCR-16-3200
    [58] Becker A, Masthoff M, Claussen J, et al. Multispectral optoacoustic tomography of the human breast: characterisation of healthy tissue and malignant lesions using a hybrid ultrasound-optoacoustic approach[J]. Eur Radiol, 2018, 28: 602-609. doi:  10.1007/s00330-017-5002-x
    [59] Goh Y, Balasundaram G, Moothanchery M, et al. Multispectral optoacoustic tomography in assessment of breast tumor margins during breast-conserving surgery: a first-in-human case study[J]. Clin Breast Cancer, 2018, 18: e1247-e1250. doi:  10.1016/j.clbc.2018.07.026
    [60] Li XQ, Xi L, Jiang RX, et al. Integrated diffuse optical tomography and photoacoustic tomography: phantom validations[J]. Biomed Opt Express, 2011, 2: 2348-2353. doi:  10.1364/BOE.2.002348
    [61] Xi L, Li XQ, Yao L, et al. Design and evaluation of a hybrid photoacoustic tomography and diffuse optical tomography system for breast cancer detection[J]. Med Phys, 2012, 39: 2584-2594. doi:  10.1118/1.3703598
    [62] Li XQ, Heldermon CD, Yao L, et al. High resolution functional photoacoustic tomography of breast cancer[J]. Med Phys, 2015, 42: 5321-5328. doi:  10.1118/1.4928598
    [63] Lin L, Hu P, Shi JH, et al. Single-breath-hold photoa-coustic computed tomography of the breast[J]. Nat Commun, 2018, 9: 2352. doi:  10.1038/s41467-018-04576-z
    [64] 张睿, 杨萌, 姜玉新.光声成像技术及其临床应用[J].协和医学杂志, 2019, 10: 381-386. doi:  10.3969/j.issn.1674-9081.2019.04.014
  • 加载中
图(4) / 表(1)
计量
  • 文章访问数:  515
  • HTML全文浏览量:  185
  • PDF下载量:  29
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-11-12
  • 录用日期:  2020-01-15
  • 网络出版日期:  2020-05-28
  • 刊出日期:  2021-01-30

目录

    /

    返回文章
    返回