Correlation of Cerebral Hemodynamics and Cerebral Oxygen Saturation with the Prognosis of Patients with Septic Shock: A Prospective Cohort Study
-
摘要:
目的 探讨大脑中动脉血流动力学相关指标及脑氧饱和度变化与感染性休克患者预后的相关性。 方法 前瞻性收集2018年5月至2019年3月在中南大学湘雅医院重症医学科住院治疗的感染性休克患者临床资料, 根据28 d内是否死亡, 将患者分为死亡组和存活组。比较两组患者一般资料, 入重症监护室即刻和初始复苏治疗6 h后动脉和中心静脉血气指标, 重症心脏超声指标, 器官功能指标, Sepsis生物标志物指标, 液体复苏治疗6 h后大脑中动脉血流速度、灌注指数、动态脑血管自动调节功能[瞬时脑充血反应率(transient hyperemic response ratio, THRR)]以及脑氧饱和度变化。采用多因素Logistic回归, 分析影响感染性休克患者预后的危险因素。 结果 51例符合纳入和排除标准的感染休克患者入选本研究, 男性31例, 女性20例, 年龄(53±13)岁, 28 d死亡率为43%。死亡组的序贯性器官衰竭评分(sequential organ failure assessment, SOFA)(P=0.007)、入室急性生理和慢性健康状况评估(acute physiology and chronic health evaluation Ⅱ, APACHE Ⅱ)评分(P=0.026)以及高峰APACHE Ⅱ评分(P < 0.001)均高于存活组。初始复苏治疗6 h后, 死亡组的氧合指数低于存活组(P=0.047), 而中心静脉-动脉二氧化碳分压差(central venous-to-arterial carbon dioxide difference, Pcv-aCO2)则高于存活组(P=0.044)。死亡组动态脑血管自动调节功能受损者(THRR < 1.09)多于存活组(P=0.025), 脑氧饱和度(regional cerebral oxygen saturation, rSO2)均值低于存活组(P=0.031)且rSO2均值< 60%者多于存活组(P=0.010)。多因素Logistic回归分析显示, 高峰APACHE Ⅱ评分(OR=1.099, 95% CI:1.009~1.196, P=0.030)、液体复苏治疗6 h后的Pcv-aCO2(OR=1.320, 95% CI:1.001~1.742, P=0.050)、THRR < 1.09(OR=4.952, 95% CI:1.130~21.70, P=0.034)和rSO2均值< 60%(OR=4.817, 95% CI:1.392~16.663, P=0.013)是预测感染性休克患者28 d内死亡的独立危险因素。 结论 感染性休克患者死亡率高, 脑血流动力学和rSO2指标中动态脑血管自动调节功能障碍(THRR < 1.09)与rSO2均值< 60%是28 d死亡率增加的独立预测因素。 Abstract:Objective The aim of this study was to explore the correlation of the changes of cerebralhemodynamic indexes of the middle cerebral artery and cerebral oxygen saturation withthe prognosis of patients with septic shock. Methods The clinical data of patients with septic shock admitted to the department of Critical Care Medicine of Xiangya Hospital of Central South University from May 2018 to March 2019 were collected. Based on if dead or not within 28 days after the admission, the patients were divided into two groups, the death group and survival group. The general clinical information, arterial and central venous blood gas index immediately after admission into our department and after 6 hours of initial liquid resuscitation, critical cardiac ultrasound indicator, organ function index, indicator of sepsis biomarkers, middle cerebral artery blood flow velocity, dynamic cerebral perfusion index, brain transient congestion response ratio (THRR), and change of cerebral oxygen saturation after 6 hours of initial liquid resuscitation were compared. Results Totally 51 patients with septic shock meeting the inclusive and exclusive criteria were enrolled in this study, 31 male and 20 female, with an average age of (53±13) years and 28-day mortality of 43%. Compared with the survival group, the death group had a higher sequential organ failure assessment (SOFA) (P=0.007), acute physiology and chronic health evaluation Ⅱ (APACHEⅡ) score (P=0.026), and peak APACHEⅡ score (P < 0.001). Patients in the death group had a lower oxygenation index (P=0.047) and a higher value of central venous-to-arterial carbon dioxide difference (Pcv-aCO2) (P=0.044). In addition, the death group showed more impaired dynamic cerebrovascular autoregulation (THRR < 1.09) (P=0.025), lower regional cerebral oxygen saturation (rSO2) mean (P=0.031), and more patients with mean rSO2 < 60% (P=0.010). Multivariable Logistic regression analysis showed that the peak APACHE Ⅱ score (OR=1.099, 95% CI: 1.009-1.196, P=0.030), the Pcv-aCO2 after 6 hours of initial liquid resuscitation (OR=1.320, 95% CI: 1.001-1.742, P=0.050), THRR < 1.09 (OR=4.952, 95% CI: 1.130-21.70, P=0.034), mean rSO2 < 60% (OR=4.817, 95% CI:1.392-16.663, P=0.013) were independently associated with the mortality. Conclusions The mortality of patients with septic shock is high; impaired dynamic cerebrovascular autoregulation (THRR < 1.09) and mean rSO2 < 60% among the cerebral hemodynamics and cerebral oxygen saturation indexes are the independent risk factors for predicting the death in 28 days. 利益冲突 无 -
图 1 51例感染性休克患者低风险组(rSO2≥60%)和高风险组(rSO2<60%)Kaplan-Meier生存曲线分析rSO2:同表 5
表 1 51例感染性休克患者的一般临床特点
临床特点 死亡组(n=22) 存活组(n=29) P值 年龄(x±s,岁) 53±13 54±14 0.892 男性[n(%)] 16(73) 15(52) 0.128 BMI(kg/m2,x±s) 22.4±2.7 22.8±2.4 0.581 教育水平[n(%)] 0.381 小学 6(27) 13(45) 中学 7(32) 6(21) 高中 4(18) 7(24) 大学及以上 5(23) 3(10) 既往史[n(%)] 高血压 6(27) 8(28) 0.980 冠心病 3(10) 5(17) 0.726 糖尿病 3(10) 6(21) 0.513 复苏后体温(x±s,℃) 37.4±0.8 37.1±0.9 0.386 最差体温(x±s,℃) 37.6±0.9 37.4±1.0 0.290 复苏后心率(x±s, 次/min) 109±18 109±17 0.977 最差心率(x±s, 次/min) 122±24 121±15 0.960 复苏后呼吸(x±s, 次/min) 22±6 21±6 0.622 最差呼吸(x±s, 次/min) 29±8 28±7 0.736 复苏后脉搏血氧饱和度(x±s,%) 97±4 98±2 0.122 最差脉搏血氧饱和度(x±s,%) 94±5 96±4 0.137 血糖(x±s,mmol/L) 10.0±5.4 8.2±3.4 0.179 平均动脉压(x±s,mmHg) 81±30 78±24 0.747 SOFA(x±s) 10±5 7±4 0.007 入室APACHEⅡ评分(x±s) 20±7 16±7 0.026 高峰APACHEⅡ评分(x±s) 29±11 18±9 <0.001 镇静[n(%)] 12(55) 13(45) 0.492 镇痛[n(%)] 17(77) 17(57) 0.162 病原菌检出[n(%)] 15(68) 14(48) 0.155 连续肾脏替代治疗[n(%)] 8(36) 8(28) 0.503 BMI:体质量质数;SOFA:序贯性器官衰竭评分;APACHEⅡ:急性生理和慢性健康状况评估 表 2 两组感染性休克患者血流动力学相关指标比较
指标 死亡组(n=22) 存活组(n=29) P值 Lac(x±s,mmol/L) t0h 3.8±3.6 2.8±2.8 0.241 t6h 4.3±3.5 2.6±2.5 0.056 Pcv-aCO2(x±s,mm Hg) t0h 8.5±5.8 7.9±2.7 0.824 t6h 8.3±4.1 5.5±2.6 0.044 ScvO2(x±s,%) t0h 62±12 67±7 0.251 t6h 64±15 70±11 0.187 CVP(x±s,mm Hg) t0h 5.7±3.4 6.9±3.8 0.362 t6h 7.3±4.2 5.8±3.6 0.263 乳酸清除率[M(QR), mmol/L] -0.135(-0.521, 0.209) -0.001(-0.375, -0.250) 0.223 PH(t6h, x±s) 7.36±0.09 7.37±0.08 0.868 PaO2(t6h,x±s,mm Hg) 117±43 121±41 0.739 PaCO2(t6h,x±s,mm Hg) 35±7 36±6 0.578 氧合指数(t6h,x±s) 246±114 316±130 0.047 去甲肾上腺素[M(QR),μg/(kg·min)] 0.60(0.38, 0.70) 0.33(0.20, 1.09) 0.299 液体总入量[t6h,M(QR), ml] 1665(1138, 2100) 2000(1550, 2300) 0.948 24 h尿量[t6h,M(QR), ml] 245(50, 758) 700(255, 1125) 0.079 CO[M(QR), L/min] 4.9(4.1, 7.1) 5.6(4.5, 6.2) 0.330 LVEF(x±s, %) 57±18 58±14 0.772 IVCD(x±s, mm) 15.4±9.0 15.6±4.4 0.915 IVC-CI(x±s, %) 33±20 22±17 0.123 t0h:入重症医学科即刻;t6h:入重症医学科初始复苏6 h后;Lac:乳酸;Pcv-aCO2:中心静脉-动脉二氧化碳分压差值;ScVO2:中心静脉血氧饱和度;CVP:中心静脉压;PaO2:氧分压;PaCO2:二氧化碳分压;CO:心输出量;LVEF:左心室射血分数;IVCD:下腔静脉呼气末绝对直径;IVC-CI:下腔静脉变异度 表 3 两组感染性休克患者器官功能及实验室指标比较
指标 死亡组(n=22) 存活组(n=29) P值 WBC(x±s,109/L) 18.8±14.8 13.9±11.8 0.196 Hb(x±s,g/L) 91.8±23.8 94.1±23.9 0.740 Hct(x±s,%) 28.4±7.4 28.8±7.2 0.841 PLT(x±s,109/L) 110.8±87.8 172.3±120.5 0.049 ALB(x±s,g/L) 27±6 25±5 0.270 TBIL[M(QR), μmol/L] 21.9(8.0, 109.7) 18.0(7.7, 28.3) 0.431 DBIL[M(QR), μmol/L] 10.2(3.5, 56.7) 10.9(3.1, 21.6) 0.537 ALT[M(QR), U/L] 34.9(14.8, 194.8) 21.0(10.3, 54.4) 0.269 AST[M(QR), U/L] 39.0(20.4, 106.3) 45.2(20.9, 81.0) 0.308 BUN(x±s, mmol/L) 10.6±7.4 8.0±6.2 0.173 UA(x±s, μmol/L) 327.7±136.3 316.0±143.9 0.771 Cr(x±s, mmol/L) 146.6±106.9 146.6±82.3 0.999 APTT(x±s, s) 39.8±9.6 42.0±13.9 0.529 INR(x±s) 1.5±0.8 1.3±0.3 0.221 PCT[M(QR), ng/ml] 18.4(6.0, 50.0) 16.1(7.5, 30.0) 0.832 NSE[M(QR), μg/L] 18.9(10.8, 27.1) 11.7(6.6, 19.1) 0.641 S100β[M(QR), μg/L] 0.37(0.21, 0.63) 0.27(0.10, 0.52) 0.472 WBC:白细胞计数;Hb:血红蛋白;Hct:血细胞比容;PLT:血小板;ALB:白蛋白;TBIL:直接胆红素;DBIL:间接胆红素;ALT:谷丙转氨酶;AST:谷草转氨酶;BUN:尿素氮;UA:尿酸;Cr:肌酐;APTT:活化部分凝血酶原时间;INR:国际化标准比值;PCT:降钙素原;NSE:神经元特异烯醇化酶 表 4 两组感染性休克患者复苏后经颅多普勒脑血流
血流动力学参数 死亡组(n=22) 存活组(n=29) P值 MAP(x±s,mm Hg) 81±30 78±24 0.747 VsMCA(x±s,cm/s) 136.1±37.0 121.7±38.1 0.185 VmMCA(x±s,cm/s) 80.6±29.7 78.2±24.4 0.747 VdMCA(x±s,cm/s) 58.3±19.3 56.2±19.5 0.709 PI(x±s) 0.95±0.20 0.84±0.21 0.082 CBFi(x±s) 632.5±171.9 661.0±188.0 0.581 S1/S2峰融合[n(%)] 13(59) 17(57) 0.973 THRR<1.09 [n(%)] 8(36) 3(10) 0.025 MAP:平均动脉压;VsMCA:大脑中动脉收缩期血流速度;VmMCA:大脑中动脉平均血流速度;VdMCA:大脑中动脉舒张期血流速度;PI:搏动指数;CBFi:脑血流指数;THRR:瞬时充血反应率 表 5 两组感染性休克患者复苏后rSO2比较
指标 死亡组(n=22) 存活组(n=29) P值 rSO2值(%) 最小值 53±7 57±6 0.053 最大值 60±6 63±6 0.057 平均值 56±7 60±7 0.031 不同rSO2平均值的患者例数[n(%)] rSO2均值<60% 17(77) 12(41) 0.010 rSO2均值<55% 10(45) 6(21) 0.590 rSO2均值<50% 4(18) 3(10) 0.421 rSO2:局部脑氧饱和度 表 6 51例感染性休克患者28 d死亡危险因素的多因素分析
危险因素 B值 SE Wals P值 Exp(B) 95% CI SOFA 0.138 0.151 0.842 0.359 1.148 0.855~1.543 APACHEⅡ评分(t0h) -0.052 0.100 0.267 0.605 0.950 0.780~1.156 高峰APACHE Ⅱ评分 0.094 0.043 4.718 0.030 1.099 1.009~1.196 氧合指数(t6h) -0.002 0.003 0.392 0.531 0.998 0.991~1.005 Pcv-aCO2(t6h) 0.278 0.142 3.849 0.050 1.320 1.001~1.742 PLT -0.006 0.003 3.572 0.059 0.994 0.988~1.001 THRR指数<1.09 1.600 0.754 4.505 0.034 4.952 1.130~21.700 rSO2平均值<60% 1.572 0.633 6.163 0.013 4.817 1.392~16.663 SOFA、APACHEⅡ、Pcv-aCO2、PLT、THRR、rSO2:同表 1~5 -
[1] Perner A, Cecconi M, Cronhjort M, et al. Expert statement for the management of hypovolemia in sepsis[J]. Intensive Care Med, 2018, 44:791-798. doi: 10.1007/s00134-018-5177-x [2] 刘大为.重症治疗:群体化、个体化、器官化[J].中华内科杂志, 2019, 58:337-341. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zhnk201905001 [3] Pierrakos C, Attou R, Decorte L, et al. Transcranial Doppler to assess sepsis-associated encephalopathy in critically ill patients[J]. BMC Anesthesiol, 2014, 14:45. doi: 10.1186/1471-2253-14-45 [4] Fischer GW. Recent advances in application of cerebral oximetry in adult cardiovascular surgery[J]. Semin Cardiothorac Vasc Anesth, 2008, 12:60-69. doi: 10.1177/1089253208316443 [5] Lopez MG, Pandharipande P, Morse J, et al. Intraoperative cerebral oxygenation, oxidative injury, and delirium follow-ing cardiac surgery[J]. Free Radic Biol Med, 2017, 103:192-198. doi: 10.1016/j.freeradbiomed.2016.12.039 [6] Asim K, Gokhan E, Ozlem B, et al. Near infrared spectrophotometry (cerebral oximetry) in predicting the return of spontaneous circulation in out-of-hospital cardiac arrest[J]. Am J Emerg Med, 2014, 32:14-17. doi: 10.1016/j.ajem.2013.09.010 [7] Esnault P, Nguyen C, Bordes J, et al. Early-onset ventilator-associated pneumonia in patients with severe traumatic brain injury:incidence, risk factors, and consequ-ences in cerebral oxygenation and outcome[J]. Neurocrit Care, 2017, 27:187-198. doi: 10.1007/s12028-017-0397-4 [8] Al Tayar A, Abouelela A, Mohiuddeen K. Can the cerebral regional oxygen saturation be a perfusion parameter in shock?[J]. J Crit Care, 2017, 38:164-167. doi: 10.1016/j.jcrc.2016.11.006 [9] Singer M, Deutschman CS, Seymour CW, et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3)[J]. JAMA, 2016, 315:801-810. doi: 10.1001/jama.2016.0287 [10] Rhodes A, Evans LE, Alhazzani W, et al. Surviving Sepsis Campaign:International Guidelines for Management of Sepsis and Septic Shock:2016[J]. Crit Care Med, 2017, 45:486-552. doi: 10.1097/CCM.0000000000002255 [11] Cavill G, Simpson EJ, Mahajan RP. Factors affecting assessment of cerebral autoregulation using the transient hyperaemic response test[J]. Br J Anaesth, 1998, 81:317-321. doi: 10.1093/bja/81.3.317 [12] Terborg C, Birkner T, Schack B, et al. Noninvasive monitoring of cerebral oxygenation during vasomotor reactivity tests by a new near-infrared spectroscopy device[J]. Cerebrovasc Dis, 2003, 16:36-41. doi: 10.1159/000070113 [13] Kim J, shim JK, Song JW, et al. Poctoperative cognitive dysfunction and the change of regional cerebral exygen saturation in elderly patients undergoing spinal surgery[J]. Anesth Analg, 2016, 123:436-444. doi: 10.1213/ANE.0000000000001352 [14] Stocchetti N, Taccone FS, Citerio G, et al. Neuroprotection in acute brain injury:an up-to-date review[J]. Crit Care, 2015, 19:186. doi: 10.1186/s13054-015-0887-8 [15] Vincent JL, De Backer D. Circulatory shock[J]. N Engl J Med, 2013, 369:1726-1734. doi: 10.1056/NEJMra1208943 [16] Shankar-Hari M, Phillips GS, Levy ML, et al. Developing a new definition and assessing new clinical criteria for septic shock:for the third international consensus definitions for sepsis and septic shock (Sepsis-3)[J]. JAMA, 2016, 315:775-787. doi: 10.1001/jama.2016.0289 [17] Vincent JL, Jones G, David S, et al. Frequency and mortality of septic shock in Europe and North America:a systematic review and meta-analysis[J]. Crit Care, 2019, 23:196. doi: 10.1186/s13054-019-2478-6 [18] Lang EW, Lagopoulos J, Griffith J, et al. Noninvasive cerebrovascular autoregulation assessment in traumatic brain injury:validation and utility[J]. J Neurotrauma, 2003, 20:69-75. doi: 10.1089/08977150360517191 [19] Smielewski P, Czosnyka M, Kirkpatrick P, et al. Evaluation of the transient hyperemic response test in head-injured patients[J]. J Neurosurg, 1997, 86:773-778. doi: 10.3171/jns.1997.86.5.0773 [20] Budohoski KP, Czosnyka M, Smielewski P, et al. Cerebral autoregulation after subarachnoid hemorrhage:comparison of three methods[J]. J Cereb Blood Flow Metab, 2013, 33:449-456. doi: 10.1038/jcbfm.2012.189 [21] Rosengarten B, Hecht M, Wolff S, et al. Autoregulative function in the brain in an endotoxic rat shock model[J]. Inflamm Res, 2008, 57:542-546. doi: 10.1007/s00011-008-7199-2 [22] Murkin JM, Adams SJ, Novick RJ, et al. Monitoring brain oxygen saturation during coronary bypass surgery:a randomized, prospective study[J]. Anesth Analg, 2007, 104:51-58. doi: 10.1213/01.ane.0000246814.29362.f4 [23] Sun X, Ellis J, Corso PJ, et al. Mortality predicted by preinduction cerebral oxygen saturation after cardiac operation[J]. Ann Thorac Surg, 2014, 98:91-96. doi: 10.1016/j.athoracsur.2014.03.025 [24] Podbregar M. Thenar tissue oxygen saturation monitoring:noninvasive does not mean simple or accurate![J]. Crit Care Med, 2012, 40:712-713. doi: 10.1097/CCM.0b013e31823c8979 [25] Lima A, van Genderen ME, Klijn E, et al. Peripheral vasoconstriction influences thenar oxygen saturation as measured by near-infrared spectroscopy[J]. Intensive Care Med, 2012, 38:606-611. doi: 10.1007/s00134-012-2486-3 [26] Georger JF, Hamzaoui O, Chaari A, et al. Restoring arterial pressure with norepinephrine improves muscle tissue oxygenation assessed by near-infrared spectroscopy in severely hypotensive septic patients[J]. Intensive Care Med, 2010, 36:1882-1829. doi: 10.1007/s00134-010-2013-3 [27] Jones S, Chiesa ST, Chaturvedi N, et al. Recent developments in near-infrared spectroscopy (NIRS) for the assessment of local skeletal muscle microvascular function and capacity to utilise oxygen[J]. Artery Res, 2016, 16:25-33. doi: 10.1016/j.artres.2016.09.001 [28] Hirsch JC, Charpie JR, Ohye RG, et al. Near infrared spectroscopy (NIRS) should not be standard of care for postoperative management[J]. Semin Thorac Cardiovasc Surg Pediatr Card Surg Annu, 2010, 13:51-54. doi: 10.1053/j.pcsu.2010.01.005 -