-
摘要: 基因组印记是令一对等位基因仅表达父源或母源基因的一种表观遗传性修饰, 多在胎盘中存在, 对胎盘和胚胎发育至关重要。在对小于胎龄儿发病机制的研究中, 印记基因是不可缺少的一部分。但相关研究争议很大, 尚未得出统一的结论。本文就近些年印记基因与小于胎龄儿的研究予以综述。Abstract: Imprinted genes are epigenetic modifications that make a pair of alleles express only paternal or maternal genes. Most of the imprinted genes exist in the placenta and are very important for placental and embryonic development. Imprinted genes are an indispensable part of the study of the pathogenesis of being small for gestational age. However, relevant research is controversial and has not yet reached a common conclusion. In this paper, recent studies on the relation ofimprinted genes and being small for gestational age are reviewed.
-
Key words:
- imprinted genes /
- small for gestational age
利益冲突 无 -
1 可能与SGA/IUGR相关的印记基因
基因 部位 研究样本(例) SGA/IUGR 甲基化程度 基因表达量 IGF2(父) 脐带血 SGA:69, AGA:471[11] ↓ - SGA:33, AGA:475[18] ↓ - 胎盘 IUGR:14, 非IUGR:15[21] - ↓ SGA:24, AGA:20[14] - ↓ SGA:130, AGA:387, LGA:160[4] 无关 无关 SGA:33, AGA:51, LGA:22[26] - 无关 早孕期绒毛膜 SGA:50, AGA:145, LGA:65[22] - ↓ 外周血 SGA:80, AGA:73[12] ↓ - H19(母) 脐带血 SGA:69, AGA:471[11] 无关 - SGA:39, AGA:49[7] ↑ - 胎盘 SGA:130, AGA:387, LGA:160[4] 无关 无关 SGA:33, AGA:51, LGA:22[26] - 无关 SGA:24, AGA:20[14] - 无关 MEST(父) 胎盘 SGA:130, AGA:387, LGA:160[4] ↑ ↓ IUGR:14, 非IUGR:15[21] 无关 ↑ SGA:33, AGA:51, LGA:22[26] - 无关 脐带血 SGA:39, AGA:49[7] 无关 - PHLDA2(母) 胎盘 SGA:130, AGA:387, LGA:160[4] 无关 无关 IUGR:14, 非IUGR:15[21] 无关 ↓ SGA:33, AGA:51, LGA:22[26] - 无关 SGA:36, AGA:41[24] - 无关 早孕期绒毛膜 SGA:50, AGA:145, LGA:65[22] - 无关 MEG3(母) 胎盘 SGA:130, AGA:387, LGA:160[4] 无关 无关,但表达增加与LGA相关 IUGR:14, 非IUGR:15[21] - ↓ SGA:33, AGA:51, LGA:22[26] - 无关 DLK1(父) 胎盘 SGA:130, AGA:387, LGA:160[4] 无关 无关,但表达增加与LGA相关 SGA:33, AGA:51, LGA:22[26] - 无关 NNAT(父) 胎盘 SGA:130, AGA:387, LGA:160[4] 无关 ↓ SGA:33, AGA:51, LGA:22[26] - 无关 GNAS 胎盘 IUGR:14, 非IUGR:15[21] - ↓ SGA:130, AGA:387, LGA:160[4] 无关 无关 PLAGL1(父) 胎盘 IUGR:14, 非IUGR:15[21] - ↓ SGA:33, AGA:51, LGA:22[26] - 无关 SGA:130, AGA:387, LGA:160[4] 无关 无关 CDKN1C(母) 胎盘 IUGR:14, 非IUGR:15[21] - ↓ SGA:130, AGA:387, LGA:160[4] 无关 无关 SLC22A18(母) 胎盘 SGA:33, AGA:51, LGA:22[26] - ↓ SGA:130, AGA:387, LGA:160[4] 无关 无关 ZNF331(父) 胎盘 SGA:33, AGA:51, LGA:22[26] - ↑ SGA:130, AGA:387, LGA:160[4] 无关 无关 SGA:小于胎龄儿;IUGR:宫内发育受限;AGA:适于胎龄儿;LGA:大于胎龄儿;↑:增加;↓:降低;-:未测 -
[1] Fowden AL, Coan PM, Angiolini E, et al. Imprinted genes and the epigenetic regulation of placental phenotype[J]. Prog Biophys Mol Biol, 2011, 106:281-288. doi: 10.1016/j.pbiomolbio.2010.11.005 [2] Bens S, Haake A, Richter J, et al. Frequency and characterization of DNA methylation defects in children born SGA[J]. Eur J Hum Genet, 2013, 21:838-843. doi: 10.1038/ejhg.2012.262 [3] Wagschal A, Feil R. Genomic imprinting in the placenta[J]. Cytogenet Genome Res, 2006, 113:90-98. doi: 10.1159/000090819 [4] Kappil MA, Green BB, Armstrong DA, et al. Placental expression profile of imprinted genes impacts birth weight[J]. Epigenetics, 2015, 10:842-849. doi: 10.1080/15592294.2015.1073881 [5] Moore T, Haig D. Genomic imprinting in mammalian development:a parental tug-of-war[J]. Trends Genet, 1991, 7:45-49. doi: 10.1016/0168-9525(91)90040-W [6] Jancevska A, Tasic V, Damcevski N, et al. Children born small for gestational age (SGA)[J]. Prilozi, 2012, 33:47-58. http://europepmc.org/abstract/MED/23425869 [7] Qian YY, Huang XL, Liang H, et al. Effects of maternal folic acid supplementation on gene methylation and being small for gestational age[J]. J Hum Nutr Diet, 2016, 29:643-651. doi: 10.1111/jhn.12369 [8] Gabory A, Jammes H, Dandolo L. The H19 locus:role of an imprinted non-coding RNA in growth and development[J]. Bioessays, 2010, 32:473-480. doi: 10.1002/bies.200900170 [9] Lee HS, Barraza-Villarreal A, Biessy C, et al. Dietary supplementation with polyunsaturated fatty acid during pregnancy modulates DNA methylation at IGF2/H19 imprinted genes and growth of infants[J]. Physiol Genomics, 2014, 46:851-857. doi: 10.1152/physiolgenomics.00061.2014 [10] Jacob KJ, Robinson WP, Lefebvre L. Beckwith-Wiedemann and Silver-Russell syndromes:opposite developmental imbalances in imprinted regulators of placental function and embryonic growth[J]. Clin Genet, 2013, 84:326-334. doi: 10.1111/cge.12143 [11] Bouwland-Both MI, van Mil NH, Stolk L, et al. DNA methylation of IGF2DMR and H19 is associated with fetal and infant growth:the generation R study[J]. PLoS One, 2013, 8:e81731. doi: 10.1371/journal.pone.0081731 [12] Murphy R, Thompson JM, Tost J, et al. No evidence for copy number and methylation variation in H19 and KCNQ10T1 imprinting control regions in children born small for gestational age[J]. BMC Med Genet, 2014, 15:67. http://www.biomedcentral.com/1471-2350/15/67 [13] Heijmans BT, Kremer D, Tobi EW, et al. Heritable rather than age-related environmental and stochastic factors dominate variation in DNA methylation of the human IGF2/H19 locus[J]. Hum Mol Genet, 2007, 16:547-554. doi: 10.1093/hmg/ddm010 [14] Guo L, Choufani S, Ferreira J, et al. Altered gene expression and methylation of the human chromosome 11 imprinted region in small for gestational age (SGA) placentae[J]. Dev Biol, 2008, 320:79-91. doi: 10.1016/j.ydbio.2008.04.025 [15] Moon YS, Park SK, Kim HT, et al. Imprinting and expression status of isoforms 1 and 2 of PEG1/MEST gene in uterine leiomyoma[J]. Gynecol Obstet Invest, 2010, 70:120-125. doi: 10.1159/000301555 [16] Kamei Y, Suganami T, Kohda T, et al. Peg1/Mest in obese adipose tissue is expressed from the paternal allele in an isoform-specific manner[J]. FEBS Lett, 2007, 581:91-96. doi: 10.1016/j.febslet.2006.12.002 [17] Kagami M, Nagai T, Fukami M, et al. Silver-Russell syndrome in a girl born after in vitro fertilization:partial hypermethylation at the differentially methylated region of PEG1/MEST[J]. J Assist Reprod Genet, 2007, 24:131-136. doi: 10.1007/s10815-006-9096-3 [18] Liu Y, Murphy SK, Murtha AP, et al. Depression in pregnancy, infant birth weight and DNA methylation of imprint regulatory elements[J]. Epigenetics, 2012, 7:735-746. doi: 10.4161/epi.20734 [19] Tunster SJ, Tycko B, John RM. The imprinted Phlda2 gene regulates extraembryonic energy stores[J]. Mol Cell Biol, 2010, 30:295-306. doi: 10.1128/MCB.00662-09 [20] Apostolidou S, Abu-Amero S, O'Donoghue K, et al. Elevated placental expression of the imprinted PHLDA2 gene is associated with low birth weight[J]. J Mol Med (Berl), 2007, 85:379-387. doi: 10.1007/s00109-006-0131-8 [21] McMinn J, Wei M, Schupf N, et al. Unbalanced placental expression of imprinted genes in human intrauterine growth restriction[J]. Placenta, 2006, 27:540-549. doi: 10.1016/j.placenta.2005.07.004 [22] Demetriou C, Abu-Amero S, Thomas AC, et al. Paternally expressed, imprinted insulin-like growth factor-2 in chorionic villi correlates significantly with birth weight[J]. PLoS One, 2014, 9:e85454. doi: 10.1371/journal.pone.0085454 [23] Frank D, Fortino W, Clark L, et al. Placental overgrowth in mice lacking the imprinted gene Ipl[J]. Proc Natl Acad Sci USA, 2002, 99:7490-7495. doi: 10.1073/pnas.122039999 [24] Mukhopadhyay A, Ravikumar G, Dwarkanath P, et al. Placental expression of the insulin receptor binding protein GRB10:Relation to human fetoplacental growth and fetal gender[J]. Placenta, 2015, 36:1225-1230. doi: 10.1016/j.placenta.2015.09.006 [25] Briggs TA, Lokulo-Sodipe K, Chandler KE, et al. Temple syndrome as a result of isolated hypomethylation of the 14q32 imprinted DLK1/MEG3 region[J]. Am J Med Genet A, 2016, 170a:170-175. doi: 10.1002/ajmg.a.37400 [26] Lambertini L, Marsit CJ, Sharma P, et al. Imprinted gene expression in fetal growth and development[J]. Placenta, 2012, 33:480-486. doi: 10.1016/j.placenta.2012.03.001 [27] Cleaton MA, Dent CL, Howard M, et al. Fetus-derived DLK1 is required for maternal metabolic adaptations to pregnancy and is associated with fetal growth restriction[J]. Nat Genet, 2016, 48:1473-1480. doi: 10.1038/ng.3699 [28] Catov JM, Bodnar LM, Olsen J, et al. Periconceptional multivitamin use and risk of preterm or small-for-gestational-age births in the Danish National Birth Cohort[J]. Am J Clin Nutr, 2011, 94:906-912. doi: 10.3945/ajcn.111.012393 [29] Timmermans S, Jaddoe VW, Hofman A, et al. Periconce-ption folic acid supplementation, fetal growth and the risks of low birth weight and preterm birth:the Generation R Study[J]. Br J Nutr, 2009, 102:777-785. doi: 10.1017/S0007114509288994 [30] Steegers-Theunissen RP, Obermann-Borst SA, Kremer D, et al. Periconceptional maternal folic acid use of 400 microg per day is related to increased methylation of the IGF2 gene in the very young child[J]. PLoS One, 2009, 4:e7845. doi: 10.1371/journal.pone.0007845 [31] El Hajj N, Pliushch G, Schneider E, et al. Metabolic programming of MEST DNA methylation by intrauterine exposure to gestational diabetes mellitus[J]. Diabetes, 2013, 62:1320-1328. doi: 10.2337/db12-0289 [32] Heijmans BT, Tobi EW, Stein AD, et al. Persistent epigenetic differences associated with prenatal exposure to famine in humans[J]. Proc Natl Acad Sci USA, 2008, 105:17046-17049. doi: 10.1073/pnas.0806560105 [33] Nye MD, King KE, Darrah TH, et al. Maternal blood lead concentrations, DNA methylation of MEG3 DMR regulating the DLK1/MEG3 imprinted domain and early growth in a multiethnic cohort[J]. Environ Epigenet, 2016, 2.pii: dvv009. -

表(1)
计量
- 文章访问数: 507
- HTML全文浏览量: 36
- PDF下载量: 175
- 被引次数: 0