留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

微小RNA在结节性硬化症相关病变中的研究进展

郭浩 王文达 蔡燚 张玉石

郭浩, 王文达, 蔡燚, 张玉石. 微小RNA在结节性硬化症相关病变中的研究进展[J]. 协和医学杂志, 2017, 8(4-5): 283-288. doi: 10.3969/j.issn.1674-9081.2017.05.017
引用本文: 郭浩, 王文达, 蔡燚, 张玉石. 微小RNA在结节性硬化症相关病变中的研究进展[J]. 协和医学杂志, 2017, 8(4-5): 283-288. doi: 10.3969/j.issn.1674-9081.2017.05.017
Hao GUO, Wen-da WANG, Yi CAI, Yu-shi ZHANG. Progress in Research on MicroRNA in Tuberous Sclerosis Complex Related Diseases[J]. Medical Journal of Peking Union Medical College Hospital, 2017, 8(4-5): 283-288. doi: 10.3969/j.issn.1674-9081.2017.05.017
Citation: Hao GUO, Wen-da WANG, Yi CAI, Yu-shi ZHANG. Progress in Research on MicroRNA in Tuberous Sclerosis Complex Related Diseases[J]. Medical Journal of Peking Union Medical College Hospital, 2017, 8(4-5): 283-288. doi: 10.3969/j.issn.1674-9081.2017.05.017

微小RNA在结节性硬化症相关病变中的研究进展

doi: 10.3969/j.issn.1674-9081.2017.05.017
基金项目: 

国家自然科学基金 81670611

北京协和医院中青年科研基金 pumch-2016-2.11

详细信息
    通讯作者:

    张玉石  电话:010-69152510,E-mail:zhangyushi333@126.com

  • 中图分类号: R596.1

Progress in Research on MicroRNA in Tuberous Sclerosis Complex Related Diseases

More Information
  • 摘要: 结节性硬化症(tuberous sclerosis complex, TSC)是一种累及多个器官和系统的常染色体显性遗传疾病, 几乎可累及人体所有器官及系统。TSC常表现为皮肤病性损害及内脏良性肿瘤, 亦有少部分恶性程度较高的肿瘤, 例如室管膜下巨细胞星形细胞瘤(subependymal giant cell astrocytoma, SEGA)、肾细胞癌等。越来越多的证据表明, 微小RNA与TSC相关病变的发生有密切关系, 起着癌基因或抑癌基因的作用。本文针对微小RNA在TSC相关病变如肺及神经系统疾病中的研究进展作一综述。
  • [1] Wu F, Zikusoka M, Trindade A, et al. MicroRNAs are differentially expressed in ulcerative colitis and alter expression of macrophage inflammatory peptide-2 alpha[J]. Gastroenterology, 2008, 135:1624-1635. doi:  10.1053/j.gastro.2008.07.068
    [2] Sayed D, Hong C, Chen IY, et al. MicroRNAs play an essential role in the development of cardiac hypertrophy[J]. Circ Res, 2007, 100:416-424. doi:  10.1161/01.RES.0000257913.42552.23
    [3] Pandit KV, Corcoran D, Yousef H, et al. Inhibition and role of let-7d in idiopathic pulmonary fibrosis[J]. Am J Respir Crit Care Med, 2010, 182:220-229. doi:  10.1164/rccm.200911-1698OC
    [4] Milosevic J, Pandit K, Magister M, et al. Profibrotic role of miR-154 in pulmonary fibrosis[J]. Am J Respir Cell Mol Biol, 2012, 47:879-887. doi:  10.1165/rcmb.2011-0377OC
    [5] Bartels CL, Tsongalis GJ. MicroRNAs:novel biomarkers for human cancer[J]. Clin Chem, 2009, 55:623-631. doi:  10.1373/clinchem.2008.112805
    [6] Finlay G. The LAM cell:what is it, where does it come from, and why does it grow?[J]. Am J Physiol Lung Cell Mol Physiol, 2004, 286:L690-L693. doi:  10.1152/ajplung.00311.2003
    [7] Bissler JJ, McCormack FX, Young LR, et al. Sirolimus for angiomyolipoma in tuberous sclerosis complex or lymphangioleiomyomatosis[J]. N Engl J Med, 2008, 358:140-151. doi:  10.1056/NEJMoa063564
    [8] McCormack FX, Inoue Y, Moss J, et al. Efficacy and safety of sirolimus in lymphangioleiomyomatosis[J]. N Engl J Med, 2011, 364:1595-1606. doi:  10.1056/NEJMoa1100391
    [9] Trindade AJ, Medvetz DA, Neuman NA, et al. MicroRNA-21 is induced by rapamycin in a model of tuberous sclerosis(TSC) and lymphangioleiomyomatosis(LAM)[J]. PLoS One, 2013, 8:e60014. doi:  10.1371/journal.pone.0060014
    [10] Medina PP, Nolde M, Slack FJ. OncomiR addiction in an in vivo model of microRNA-21-induced pre-B-cell lymphoma[J]. Nature, 2010, 467:86-90. doi:  10.1038/nature09284
    [11] Asangani IA, Rasheed SA, Nikolova DA, et al. MicroRNA-21(miR-21) post-transcriptionally downregulates tumor suppressor Pdcd4 and stimulates invasion, intravasation and metastasis in colorectal cancer[J]. Oncogene, 2008, 27:2128-2136. doi:  10.1038/sj.onc.1210856
    [12] Ma X, Kumar M, Choudhury SN, et al. Loss of the miR-21 allele elevates the expression of its target genes and reduces tumorigenesis[J]. Proc Natl Acad Sci USA, 2011, 108:10144-10149. doi:  10.1073/pnas.1103735108
    [13] Meng F, Henson R, Wehbe-Janek H, et al. MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer[J]. Gastroenterology, 2007, 133:647-658. doi:  10.1053/j.gastro.2007.05.022
    [14] Scott CL, Walker DJ, Cwiklinski E, et al. Control of HIF-1{alpha} and vascular signaling in fetal lung involves cross talk between mTORC1 and the FGF-10/FGFR2b/Spry2 airway branching periodicity clock[J]. Am J Physiol Lung Cell Mol Physiol, 2010, 299:L455-L471. doi:  10.1152/ajplung.00348.2009
    [15] Wang M, Li W, Chang GQ, et al. MicroRNA-21 regulates vascular smooth muscle cell function via targeting tropomyosin 1 in arteriosclerosis obliterans of lower extremities[J]. Arterioscler Thromb Vasc Biol, 2011, 31:2044-2053. doi:  10.1161/ATVBAHA.111.229559
    [16] Chan MC, Hilyard AC, Wu C, et al. Molecular basis for antagonism between PDGF and the TGFbeta family of signalling pathways by control of miR-24 expression[J]. EMBO J, 2010, 29:559-573. doi:  10.1038/emboj.2009.370
    [17] Goncharova EA, Goncharov DA, Spaits M, et al. Abnormal growth of smooth muscle-like cells in lymphangioleiomyomatosis:Role for tumor suppressor TSC2[J]. Am J Respir Cell Mol Biol, 2006, 34:561-572. doi:  10.1165/rcmb.2005-0300OC
    [18] Goncharova EA, Goncharov DA, Lim PN, et al. Modulation of cell migration and invasiveness by tumor suppressor TSC2 in lymphangioleiomyomatosis[J]. Am J Respir Cell Mol Biol, 2006, 34:473-480. doi:  10.1165/rcmb.2005-0374OC
    [19] Weichhart T, Costantino G, Poglitsch M, et al. The TSC-mTOR signaling pathway regulates the innate inflammatory response[J]. Immunity, 2008, 29:565-577. doi:  10.1016/j.immuni.2008.08.012
    [20] Curatolo P, Moavero R, de Vries PJ. Neurological and neuropsychiatric aspects of tuberous sclerosis complex[J]. Lancet Neurol, 2015, 14:733-745. doi:  10.1016/S1474-4422(15)00069-1
    [21] Iyer A, Zurolo E, Prabowo A, et al. MicroRNA-146a:a key regulator of astrocyte-mediated inflammatory response[J]. PLoS One, 2012, 7:e44789. doi:  10.1371/journal.pone.0044789
    [22] Aronica E, Fluiter K, Iyer A, et al. Expression pattern of miR-146a, an inflammation-associated microRNA, in experimental and human temporal lobe epilepsy[J]. Eur J Neurosci, 2010, 31:1100-1107. doi:  10.1111/j.1460-9568.2010.07122.x
    [23] Ashhab MU, Omran A, Kong H, et al. Expressions of tumor necrosis factor alpha and microRNA-155 in immature rat model of status epilepticus and children with mesial temporal lobe epilepsy[J]. J Mol Neurosci, 2013, 51:950-958. doi:  10.1007/s12031-013-0013-9
    [24] Nabbout R, Santos M, Rolland Y, et al. Early diagnosis of subependymal giant cell astrocytoma in children with tuberous sclerosis[J]. J Neurol Neurosurg Psychiatry, 1999, 66:370-375. doi:  10.1136/jnnp.66.3.370
    [25] Adriaensen ME, Schaefer-Prokop CM, Stijnen T, et al. Prevalence of subependymal giant cell tumors in patients with tuberous sclerosis and a review of the literature[J]. Eur J Neurol, 2009, 16:691-696. doi:  10.1111/j.1468-1331.2009.02567.x
    [26] Ciafre SA, Galardi S, Mangiola A, et al. Extensive modulation of a set of microRNAs in primary glioblastoma[J]. Biochem Biophys Res Commun, 2005, 334:1351-1358. doi:  10.1016/j.bbrc.2005.07.030
    [27] Kida Y, Han YP. MicroRNA expression in colon adenocarcinoma[J]. JAMA, 2008, 299:2628, 2628-2629. http://cn.bing.com/academic/profile?id=2c746ee9d29b04dd87621dfb78c318fd&encoded=0&v=paper_preview&mkt=zh-cn
    [28] van Scheppingen J, Iyer AM, Prabowo AS, et al. Expression of microRNAs miR21, miR146a, and miR155 in tuberous sclerosis complex cortical tubers and their regulation in human astrocytes and SEGA-derived cell cultures[J]. Glia, 2016, 64:1066-1082. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=d71399b5b9551ec59d0c78cb813501fe
    [29] Boer K, Crino PB, Gorter JA, et al. Gene expression analysis of tuberous sclerosis complex cortical tubers reveals increased expression of adhesion and inflammatory factors[J]. Brain Pathol, 2010, 20:704-719. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2888867/
    [30] Prabowo AS, Anink JJ, Lammens M, et al. Fetal brain lesions in tuberous sclerosis complex:TORC1 activation and inflammation[J]. Brain Pathol, 2013, 23:45-59. doi:  10.1111/j.1750-3639.2012.00616.x
    [31] Prabowo AS, van Scheppingen J, Iyer AM, et al. Differential expression and clinical significance of three inflammation-related microRNAs in gangliogliomas[J]. J Neuroinflammation, 2015, 12:97. doi:  10.1186/s12974-015-0315-7
    [32] Loffler D, Brocke-Heidrich K, Pfeifer G, et al. Interleukin-6 dependent survival of multiple myeloma cells involves the Stat3-mediated induction of microRNA-21 through a highly conserved enhancer[J]. Blood, 2007, 110:1330-1333. https://www.ncbi.nlm.nih.gov/pubmed/17496199
    [33] Gabriely G, Wurdinger T, Kesari S, et al. MicroRNA 21 promotes glioma invasion by targeting matrix metalloproteinase regulators[J]. Mol Cell Biol, 2008, 28:5369-5380. doi:  10.1128/MCB.00479-08
    [34] Tili E, Michaille JJ, Croce CM. MicroRNAs play a central role in molecular dysfunctions linking inflammation with cancer[J]. Immunol Rev, 2013, 253:167-184. doi:  10.1111/imr.12050
    [35] Krichevsky AM, Gabriely G. miR-21:a small multi-faceted RNA[J]. J Cell Mol Med, 2009, 13:39-53. http://cn.bing.com/academic/profile?id=8b10584800b1baebaa8d36cccc0f3872&encoded=0&v=paper_preview&mkt=zh-cn
    [36] Kumarswamy R, Volkmann I, Thum T. Regulation and function of miRNA-21 in health and disease[J]. RNA Biol, 2011, 8:706-713. doi:  10.4161/rna.8.5.16154
    [37] Moffett HF, Novina CD. A small RNA makes a Bic difference[J]. Genome Biol, 2007, 8:221. doi:  10.1186/gb-2007-8-7-221
    [38] Quinn SR, O'Neill LA. A trio of microRNAs that control Toll-like receptor signalling[J]. Int Immunol, 2011, 23:421-425. doi:  10.1093/intimm/dxr034
    [39] Tarassishin L, Lee SC. Interferon regulatory factor 3 alters glioma inflammatory and invasive properties[J]. J Neurooncol, 2013, 113:185-194. doi:  10.1007/s11060-013-1109-3
    [40] Mei J, Bachoo R, Zhang CL. MicroRNA-146a inhibits glioma development by targeting Notch1[J]. Mol Cell Biol, 2011, 31:3584-3592. doi:  10.1128/MCB.05821-11
  • 加载中
计量
  • 文章访问数:  7
  • HTML全文浏览量:  5
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-06-26
  • 刊出日期:  2017-09-30

目录

    /

    返回文章
    返回

    【温馨提醒】近日,《协和医学杂志》编辑部接到作者反映,有多名不法人员冒充期刊编辑发送见刊通知,鼓动作者添加微信,从而骗取版面费的行为。特提醒您,本刊与作者联系的方式均为邮件通知或电话,稿件进度通知邮箱为:mjpumch@126.com,编辑部电话为:010-69154261,请提高警惕,谨防上当受骗!如有任何疑问,请致电编辑部核实。谢谢!