留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

肠道菌群与心血管健康:心肠密不可分

赵心悦 胡晓敏 张抒扬

赵心悦, 胡晓敏, 张抒扬. 肠道菌群与心血管健康:心肠密不可分[J]. 协和医学杂志, 2022, 13(5): 725-731. doi: 10.12290/xhyxzz.2022-0444
引用本文: 赵心悦, 胡晓敏, 张抒扬. 肠道菌群与心血管健康:心肠密不可分[J]. 协和医学杂志, 2022, 13(5): 725-731. doi: 10.12290/xhyxzz.2022-0444
ZHAO Xinyue, HU Xiaomin, ZHANG Shuyang. Gut Microbiome and Cardiovascular Health: Heart and Gut are Inextricably Linked[J]. Medical Journal of Peking Union Medical College Hospital, 2022, 13(5): 725-731. doi: 10.12290/xhyxzz.2022-0444
Citation: ZHAO Xinyue, HU Xiaomin, ZHANG Shuyang. Gut Microbiome and Cardiovascular Health: Heart and Gut are Inextricably Linked[J]. Medical Journal of Peking Union Medical College Hospital, 2022, 13(5): 725-731. doi: 10.12290/xhyxzz.2022-0444

肠道菌群与心血管健康:心肠密不可分

doi: 10.12290/xhyxzz.2022-0444
基金项目: 

国家自然科学基金 8217022134

北京市自然科学基金 7202152

北京协和医院中央高水平医院临床科研专项青年培优计划基金 2022-PUMCH-A-026

详细信息
    通讯作者:

    胡晓敏, E-mail: huxiaomin2015@163.com

    张抒扬, E-mail: shuyangzhang103@163.com

  • 中图分类号: R593;R714.252;R378

Gut Microbiome and Cardiovascular Health: Heart and Gut are Inextricably Linked

Funds: 

National Natural Science Foundation 8217022134

Beijing Natural Science Foundation 7202152

National High Level Hospital Clinical Research Funding 2022-PUMCH-A-026

More Information
  • 摘要: 近年来,随着多组学和下一代测序技术的发展,肠道菌群与人类心血管疾病的关系受到广泛关注。肠道菌群作为“微生物器官”,通过脂多糖等细胞成分、氧化三甲胺、短链脂肪酸等代谢物直接调节机体健康状态,也可通过细菌及其产物影响机体免疫。“肠-心轴”有望成为心血管疾病防治的新突破口。本文就肠道菌群与心血管疾病的关系、影响心血管健康的可能途径以及多种因素对肠道菌群的调控进行阐述。
    作者贡献:赵心悦负责查阅文献、起草并修订论文;胡晓敏负责设计论文框架、修订论文;张抒扬提出研究思路、指导并审校论文。
    利益冲突:所有作者均声明不存在利益冲突
  • [1] 中国心血管健康与疾病报告编写组. 中国心血管健康与疾病报告2021概要[J]. 中国循环杂志, 2022, 37: 553-578. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGXH202206012.htm

    The Writing Committee of the Report on Cardiovascular Health and Diseases in China. Report on Cardiovascular Health and Diseases in China 2021: an Updated Summary[J]. Zhongguo Xunhuan Zazhi, 2022, 37: 553-578. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGXH202206012.htm
    [2] Sender R, Fuchs S, Milo R. Are We Really Vastly Outnumbered? Revisiting the Ratio of Bacterial to Host Cells in Humans[J]. Cell, 2016, 164: 337-340. doi:  10.1016/j.cell.2016.01.013
    [3] Jie Z, Xia H, Zhong SL, et al. The Gut Microbiome in Atherosclerotic Cardiovascular Disease[J]. Nat Commun, 2017, 8: 845. doi:  10.1038/s41467-017-00900-1
    [4] Liu H, Chen X, Hu X, et al. Alterations in The Gut Microbiome and Metabolism with Coronary Artery Disease Severity[J]. Microbiome, 2019, 7: 68. doi:  10.1186/s40168-019-0683-9
    [5] Talmor-Barkan Y, Bar N, Shaul AA, et al. Metabolomic and Microbiome Profiling Reveals Personalized Risk Factors for Coronary Artery Disease[J]. Nat Med, 2022, 28: 295-302. doi:  10.1038/s41591-022-01686-6
    [6] Fromentin S, Forslund SK, Chechi K, et al. Microbiome and Metabolome Features of the Cardiometabolic Disease Spectrum[J]. Nat Med, 2022, 28: 303-314. doi:  10.1038/s41591-022-01688-4
    [7] Kummen M, Mayerhofer CCK, Vestad B, et al. Gut Microbiota Signature in Heart Failure Defined from Profiling of 2 Independent Cohorts[J]. J Am Coll Cardiol, 2018, 71: 1184-1186. doi:  10.1016/j.jacc.2017.12.057
    [8] Beale AL, O'Donnell JA, Nakai ME, et al. The Gut Microbiome of Heart Failure with Preserved Ejection Fraction[J]. J Am Heart Assoc, 2021, 10: e020654. doi:  10.1161/JAHA.120.020654
    [9] Pasini E, Aquilani R, Testa C, et al. Pathogenic Gut Flora in Patients with Chronic Heart Failure[J]. JACC Heart Fail, 2016, 4: 220-227. doi:  10.1016/j.jchf.2015.10.009
    [10] Sandek A, Swidsinski A, Schroedl W, et al. Intestinal Blood Flow in Patients with Chronic Heart Failure: A Link with Bacterial Growth, Gastrointestinal Symptoms, and Cachexia[J]. J Am Coll Cardiol, 2014, 64: 1092-1102. doi:  10.1016/j.jacc.2014.06.1179
    [11] Carrillo-Salinas FJ, Anastasiou M, Ngwenyama N, et al. Gut Dysbiosis Induced by Cardiac Pressure Overload Enhances Adverse Cardiac Remodeling in a T Cell-ependent Manner[J]. Gut Microbes, 2020, 12: 1-20.
    [12] Li J, Zhao F, Wang Y, et al. Gut Microbiota Dysbiosis Contributes to the Development of Hypertension[J]. Microbiome, 2017, 5: 14. doi:  10.1186/s40168-016-0222-x
    [13] Dinakis E, Nakai M, Gill P, et al. Association Between the Gut Microbiome and Their Metabolites with Human Blood Pressure Variability[J]. Hypertension, 2022, 79: 1690-1701. doi:  10.1161/HYPERTENSIONAHA.122.19350
    [14] Chaudhari SN, McCurry MD, Devlin AS. Chains of Evidence from Correlations to Causal Molecules in Microbiome-Linked Diseases[J]. Nat Chem Biol, 2021, 17: 1046-1056. doi:  10.1038/s41589-021-00861-z
    [15] Khan I, Khan I, Kakakhel MA, et al. Comparison of Microbial Populations in the Blood of Patients with Myocardial Infarction and Healthy Individuals[J]. Front Microbiol, 2022, 13: 845038. doi:  10.3389/fmicb.2022.845038
    [16] Rajendhran J, Shankar M, Dinakaran V, et al. Contrasting Circulating Microbiome in Cardiovascular Disease Patients and Healthy Individuals[J]. Int J Cardiol, 2013, 168: 5118-5120. doi:  10.1016/j.ijcard.2013.07.232
    [17] Amar J, Lange C, Payros G, et al. Blood Microbiota Dysbiosis Is Associated with the Onset of Cardiovascular Events in A Large General Population: The D.E.S.I.R. Study[J]. PLoS One, 2013, 8: e54461. doi:  10.1371/journal.pone.0054461
    [18] Zhou X, Li J, Guo J, et al. Gut-Dependent Microbial Translocation Induces Inflammation and Cardiovascular Events After ST-Elevation Myocardial Infarction[J]. Microbiome, 2018, 6: 66. doi:  10.1186/s40168-018-0441-4
    [19] Ott SJ, El Mokhtari NE, Musfeldt M, et al. Detection of Diverse Bacterial Signatures in Atherosclerotic Lesions of Patients with Coronary Heart Disease[J]. Circulation, 2006, 113: 929-937. doi:  10.1161/CIRCULATIONAHA.105.579979
    [20] Yuzefpolskaya M, Bohn B, Nasiri M, et al. Gut Microbiota, Endotoxemia, Inflammation, And Oxidative Stress in Patients with Heart Failure, Left Ventricular Assist Device, And Transplant[J]. J Heart Lung Transplant, 2020, 39: 880-890. doi:  10.1016/j.healun.2020.02.004
    [21] Violi F, Cammisotto V, Bartimoccia S, et al. Gut-Derived Low-Grade Endotoxaemia, Atherothrombosis and Cardiovascular Disease[J]. Nat Rev Cardiol, 2022, 15: 1-14.
    [22] Wang Z, Tang WHW, Buffa JA, et al. Prognostic Value of Choline and Betaine Depends on Intestinal Microbiota-Generated Metabolite Trimethylamine-N-Oxide[J]. Eur Heart J, 2014, 35: 904-910. doi:  10.1093/eurheartj/ehu002
    [23] Wang Z, Klipfell E, Bennett BJ, et al. Gut Flora Metabolism of Phosphatidylcholine Promotes Cardiovascular Disease[J]. Nature, 2011, 472: 57-63. doi:  10.1038/nature09922
    [24] Zhu W, Gregory JC, Org E, et al. Gut Microbial Metabolite TMAO Enhances Platelet Hyperreactivity and Thrombosis Risk[J]. Cell, 2016, 165: 111-124. doi:  10.1016/j.cell.2016.02.011
    [25] Wang Z, Roberts AB, Buffa JA, et al. Non-lethal Inhibition of Gut Microbial Trimethylamine Production for the Treatment of Atherosclerosis[J]. Cell, 2015, 163: 1585-1595. doi:  10.1016/j.cell.2015.11.055
    [26] Li XS, Wang Z, Cajka T, et al. Untargeted Metabolomics Identifies Trimethyllysine, A TMAO-Producing Nutrient Precursor, As A Predictor of Incident Cardiovascular Disease Risk[J]. JCI Insight, 2018, 3: e99096. doi:  10.1172/jci.insight.99096
    [27] Li XS, Obeid S, Wang Z, et al. Trimethyllysine, A Trimethylamine N-Oxide Precursor, Provides Near- and Long-Term Prognostic Value in Patients Presenting with Acute Coronary Syndromes[J]. Eur Heart J, 2019, 40: 2700-2709. doi:  10.1093/eurheartj/ehz259
    [28] Zhao M, Wei H, Li C, et al. Gut Microbiota Production of Trimethyl-5-Aminovaleric Acid Reduces Fatty Acid Oxidation and Accelerates Cardiac Hypertrophy[J]. Nat Commun, 2022, 13: 1757. doi:  10.1038/s41467-022-29060-7
    [29] Li L, Zhong SJ, Hu SY, et al. Changes of Gut Microbiome Composition and Metabolites Associated with Hypertensive Heart Failure Rats[J]. BMC microbiol, 2021, 21: 141. doi:  10.1186/s12866-021-02202-5
    [30] Kadir AA, Clarke K, Evans RD. Cardiac Ketone Body Metabolism[J]. Biochim Biophys Acta Mol Basis Dis, 2020, 1866: 165739. doi:  10.1016/j.bbadis.2020.165739
    [31] Carley AN, Maurya SK, Fasano M, et al. Short-Chain Fatty Acids Outpace Ketone Oxidation in the Failing Heart[J]. Circulation, 2021, 143: 1797-1808. doi:  10.1161/CIRCULATIONAHA.120.052671
    [32] Tang TWH, Chen HC, Chen CY, et al. Loss of Gut Microbiota Alters Immune System Composition and Cripples Postinfarction Cardiac Repair[J]. Circulation, 2019, 139: 647-659. doi:  10.1161/CIRCULATIONAHA.118.035235
    [33] Song T, Guan X, Wang X, et al. Dynamic Modulation of Gut Microbiota Improves Post-Myocardial Infarct Tissue Repair in Rats Via Butyric Acid-Mediated Histone Deacetylase Inhibition[J]. FASEB J, 2021, 35: e21385.
    [34] Pluznick J. A Novel SCFA Receptor, The Microbiota, and Blood Pressure Regulation[J]. Gut Microbes, 2014, 5: 202-207. doi:  10.4161/gmic.27492
    [35] Yang T, Santisteban MM, Rodriguez V, et al. Gut Dysbiosis is Linked to Hypertension[J]. Hypertension, 2015, 65: 1331-1340. doi:  10.1161/HYPERTENSIONAHA.115.05315
    [36] Bartolomaeus H, Balogh A, Yakoub M, et al. Short-Chain Fatty Acid Propionate Protects from Hypertensive Cardiovascular Damage[J]. Circulation, 2019, 139: 1407-1421. doi:  10.1161/CIRCULATIONAHA.118.036652
    [37] Mayerhofer CCK, Ueland T, Broch K, et al. Increased Secondary/Primary Bile Acid Ratio in Chronic Heart Failure[J]. J Card Fail, 2017, 23: 666-671. doi:  10.1016/j.cardfail.2017.06.007
    [38] Wu Q, Sun L, Hu X, et al. Suppressing the Intestinal Farnesoid X Receptor/Sphingomyelin Phosphodiesterase 3 Axis Decreases Atherosclerosis[J]. J Clin Invest, 2021, 131: e142865. doi:  10.1172/JCI142865
    [39] Wilck N, Matus MG, Kearney SM, et al. Salt-Responsive Gut Commensal Modulates TH17 Axis and Disease[J]. Nature, 2017, 551: 585-589. doi:  10.1038/nature24628
    [40] Xue H, Chen X, Yu C, et al. Gut Microbially Produced Indole-3-Propionic Acid Inhibits Atherosclerosis by Promoting Reverse Cholesterol Transport and Its Deficiency Is Causally Related to Atherosclerotic Cardiovascular Disease[J]. Circ Res, 2022, 131: 404-420. doi:  10.1161/CIRCRESAHA.122.321253
    [41] Barreto FC, Barreto DV, Liabeuf S, et al. Serum Indoxyl Sulfate Is Associated with Vascular Disease and Mortality in Chronic Kidney Disease Patients[J]. Clin J Am Soc Nephrol, 2009, 4: 1551-1558. doi:  10.2215/CJN.03980609
    [42] Poesen R, Claes K, Evenepoel P, et al. Microbiota-Derived Phenylacetylglutamine Associates with Overall Mortality and Cardiovascular Disease in Patients with CKD[J]. J Am Soc Nephrol, 2016, 27: 3479-3487. doi:  10.1681/ASN.2015121302
    [43] Nemet I, Saha PP, Gupta N, et al. A Cardiovascular Disease-Linked Gut Microbial Metabolite Acts via Adrenergic Receptors[J]. Cell, 2020, 180: 862-877. e22. doi:  10.1016/j.cell.2020.02.016
    [44] Bhattacharya S, Granger CB, Craig D, et al. Validation of The Association Between a Branched Chain Amino Acid Metabolite Profile and Extremes of Coronary Artery Disease in Patients Referred for Cardiac Catheterization[J]. Atherosclerosis, 2014, 232: 191-196. doi:  10.1016/j.atherosclerosis.2013.10.036
    [45] Shah SH, Sun JL, Stevens RD, et al. Baseline Metabolomic Profiles Predict Cardiovascular Events in Patients at Risk for Coronary Artery Disease[J]. Am Heart J, 2012, 163: 844-850. e1 doi:  10.1016/j.ahj.2012.02.005
    [46] Qiao S, Liu C, Sun L, et al. Gut Parabacteroides Merdae Protects Against Cardiovascular Damage by Increasing Commensal Bacteria-Driven Branched-Chain Amino Acid Catabolism[J/OL ]. (2021-09)[2022-08-10]. https://www.researchgate.net/publication/356941523_Gut_Parabacteroides_merdae_protects_against_cardiovascular_damage_by_increasing_commensal_bacteria-driven_branched-chain_amino_acid_catabolism.
    [47] Gowthaman U, Eswarakumar VP. Molecular Mimicry: Good Artists Copy, Great Artists Steal[J]. Virulence, 2013, 4: 433-434. doi:  10.4161/viru.25780
    [48] Gil-Cruz C, Perez-Shibayama C, De Martin A, et al. Microbiota-Derived Peptide Mimics Drive Lethal Inflammatory Cardiomyopathy[J]. Science, 2019, 366: 881-886. doi:  10.1126/science.aav3487
    [49] Suzuki TA, Ley RE. The Role of The Microbiota in Human Genetic Adaptation[J]. Science, 2020, 370: eaaz6827. doi:  10.1126/science.aaz6827
    [50] Forslund SK, Chakaroun R, Zimmermann-Kogadeeva M, et al. Combinatorial, Additive and Dose-Dependent Drug-Microbiome Associations[J]. Nature, 2021, 600: 500-505. doi:  10.1038/s41586-021-04177-9
    [51] Vieira-Silva S, Falony G, Belda E, et al. Statin Therapy Is Associated with Lower Prevalence of Gut Microbiota Dysbiosis[J]. Nature, 2020, 581: 310-315. doi:  10.1038/s41586-020-2269-x
    [52] Hu X, Fan Y, Li H, et al. Impacts of Cigarette Smoking Status on Metabolomic and Gut Microbiota Profile in Male Patients with Coronary Artery Disease: A Multi-Omics Study[J]. Front Cardiovasc Med, 2021, 8: 766739. doi:  10.3389/fcvm.2021.766739
    [53] Zhao X, Zhou R, Li H, et al. The Effects of Moderate Alcohol Consumption on Circulating Metabolites and Gut Microbiota in Patients with Coronary Artery Disease[J]. Front Cardiovasc Med, 2021, 8: 767692. doi:  10.3389/fcvm.2021.767692
    [54] Tian R, Liu H, Feng S, et al. Gut Microbiota Dysbiosis in Stable Coronary Artery Disease Combined with Type 2 Diabetes Mellitus Influences Cardiovascular Prognosis[J]. Nutr Metab Cardiovasc Dis, 2021, 31: 1454-1466. doi:  10.1016/j.numecd.2021.01.007
    [55] Hu X, Zhou R, Li H, et al. Alterations of Gut Microbiome and Serum Metabolome in Coronary Artery Disease Patients Complicated with Non-alcoholic Fatty Liver Disease Are Associated with Adverse Cardiovascular Outcomes[J]. Front Cardiovasc Med, 2022, 8: 805812.
  • 加载中
计量
  • 文章访问数:  22
  • HTML全文浏览量:  1
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-12
  • 录用日期:  2022-08-24
  • 网络出版日期:  2022-09-07
  • 刊出日期:  2022-09-30

目录

    /

    返回文章
    返回

    【通知】尊敬的读者、作者及编者:因特殊原因,本站自2022.9.30至10.24日期间实施6—24点开放,其他时段访问受限,给您带来不便敬请谅解!10.25日恢复如常。