留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

TBX6相关先天性脊柱侧凸——一种由国人定义的全新先天性脊柱侧凸亚型

吴南 李国壮 吴志宏 仉建国 邱贵兴

吴南, 李国壮, 吴志宏, 仉建国, 邱贵兴. TBX6相关先天性脊柱侧凸——一种由国人定义的全新先天性脊柱侧凸亚型[J]. 协和医学杂志, 2022, 13(5): 719-724. doi: 10.12290/xhyxzz.2022-0339
引用本文: 吴南, 李国壮, 吴志宏, 仉建国, 邱贵兴. TBX6相关先天性脊柱侧凸——一种由国人定义的全新先天性脊柱侧凸亚型[J]. 协和医学杂志, 2022, 13(5): 719-724. doi: 10.12290/xhyxzz.2022-0339
WU Nan, LI Guozhuang, WU Zhihong, ZHANG Jianguo, QIU Guixing. TBX6-associated Congenital Scoliosis: A New Congenital Scoliosis Subtype Defined by Chinese[J]. Medical Journal of Peking Union Medical College Hospital, 2022, 13(5): 719-724. doi: 10.12290/xhyxzz.2022-0339
Citation: WU Nan, LI Guozhuang, WU Zhihong, ZHANG Jianguo, QIU Guixing. TBX6-associated Congenital Scoliosis: A New Congenital Scoliosis Subtype Defined by Chinese[J]. Medical Journal of Peking Union Medical College Hospital, 2022, 13(5): 719-724. doi: 10.12290/xhyxzz.2022-0339

TBX6相关先天性脊柱侧凸——一种由国人定义的全新先天性脊柱侧凸亚型

doi: 10.12290/xhyxzz.2022-0339
基金项目: 

中国医学科学院医学与健康科技创新工程 2021-I2M-1-051

中国医学科学院医学与健康科技创新工程 2021-I2M-1-052

中国医学科学院医学与健康科技创新工程 2020-I2M-C & T-B-030

中央级公益性科研院所基本科研项目 2019PT320025

详细信息
    通讯作者:

    吴南, E-mail: dr.wunan@pumch.cn

    邱贵兴, E-mail: qguixing@126.com

  • 中图分类号: R682.1; R816.8

TBX6-associated Congenital Scoliosis: A New Congenital Scoliosis Subtype Defined by Chinese

Funds: 

CAMS Innovation Fund for Medical Sciences 2021-I2M-1-051

CAMS Innovation Fund for Medical Sciences 2021-I2M-1-052

CAMS Innovation Fund for Medical Sciences 2020-I2M-C & T-B-030

Non-profit Central Research Institute Fund of Chinese Academy of Medical Sciences 2019PT320025

More Information
  • 摘要: 先天性脊柱侧凸(congenital scoliosis,CS)是起源于胚胎期脊柱发育异常的先天性脊柱畸形,具有进展快、畸形重、并发症多等特点,给患者及家庭带来了沉重的经济和精神负担。目前,对于脊柱畸形的病因学治疗尚无良策。因缺乏早期预测手段,患者多在出现畸形外观时才被发现,治疗方法多以支具或手术控制病情发展的被动、保守或创伤性治疗为主。因此,探索脊柱畸形早期的诊断方法和有效的病因学干预靶点是当前国际研究的热点。近10年来,北京协和医院骨科团队专注于CS的分子遗传学研究和临床应用,牵头建立了国际多中心骨骼畸形遗传研究体系;通过大规模队列研究,发现并论证了TBX6基因无效变异联合常见亚效等位基因共同导致CS,建立了一套基因型-表型整合分析方法,成功定义了一种全新的CS疾病亚型——TBX6相关先天性脊柱侧凸,并实现了临床对于这一独特亚型的精准预测;率先开设骨骼畸形遗传门诊,实现研究成果的临床转化,为骨骼畸形病因学研究及临床应用提供了新范式。
    作者贡献:吴南负责论文构思与写作;李国壮负责论文初稿撰写;吴志宏、仉建国、邱贵兴负责论文构思及审校。
    利益冲突:所有作者均声明不存在利益冲突
  • [1] Beals RK, Robbins JR, Rolfe B. Anomalies associated with vertebral malformations[J]. Spine, 1993, 18: 1329-1332. doi:  10.1097/00007632-199308000-00012
    [2] Johal J, Loukas M, Fisahn C, et al. Hemivertebrae: a comprehensive review of embryology, imaging, classification, and management[J]. Childs Nerv Syst, 2016, 32: 2105-2109. doi:  10.1007/s00381-016-3195-y
    [3] 国家卫生健康委员会, 科学技术部, 工业和信息化部, 等. 关于公布第一批罕见病目录的通知[EB/OL]. (2018-05-11)[2022-05-01]. http://www.nhc.gov.cn/cms-search/xxgk/getManuscriptXxgk.htm?id=393a9a37f39c4b458d6e830f40a4bb99.
    [4] Winter RB, Moe JH, Eilers VE. Congenital Scoliosis A Study of 234 Patients Treated and Untreated: PART Ⅰ: NATURAL HISTORY[J]. JBJS, 1968, 50: 1-15. doi:  10.2106/00004623-196850010-00001
    [5] Giampietro PF, Dunwoodie SL, Kusumi K, et al. Progress in the understanding of the genetic etiology of vertebral segmentation disorders in humans[J]. Ann N Y Acad Sci, 2009, 1151: 38-67. doi:  10.1111/j.1749-6632.2008.03452.x
    [6] Reeves HA. Bodily deformities and their treatment[J]. Bristol Med Chir J, 1885, 3: 200-201.
    [7] Cooke J, Zeeman EC. A clock and wavefront model for control of the number of repeated structures during animal morphogenesis[J]. J Theor Biol, 1976, 58: 455-476. doi:  10.1016/S0022-5193(76)80131-2
    [8] Pourquie O. The vertebrate segmentation clock[J]. J Anat, 2001, 199: 169-175. doi:  10.1046/j.1469-7580.2001.19910169.x
    [9] Sato Y, Yasuda K, Takahashi Y. Morphological boundary forms by a novel inductive event mediated by Lunatic fringe and Notch during somitic segmentation[J]. Development, 2002, 129: 3633-3644. doi:  10.1242/dev.129.15.3633
    [10] Papapetrou C, Putt W, Fox M, et al. The human TBX6 gene: cloning and assignment to chromosome 16p11.2[J]. Genomics, 1999, 55: 238-241. doi:  10.1006/geno.1998.5646
    [11] Chapman DL, Papaioannou VE. Three neural tubes in mouse embryos with mutations in the T-box gene Tbx6[J]. Nature, 1998, 391: 695-697. doi:  10.1038/35624
    [12] Hubaud A, Pourquié O. Signalling dynamics in vertebrate segmentation[J]. Nat Rev Mol Cell Biol, 2014, 15: 709-721. doi:  10.1038/nrm3891
    [13] Chapman DL, Agulnik I, Hancock S, et al. Tbx6, a mouse T-Box gene implicated in paraxial mesoderm formation at gastrulation[J]. Dev Biol, 1996, 180: 534-542. doi:  10.1006/dbio.1996.0326
    [14] Fei Q, Wu Z, Wang H, et al. The association analysis of TBX6 polymorphism with susceptibility to congenital scoliosis in a Chinese Han population[J]. Spine, 2010, 35: 983-988. doi:  10.1097/BRS.0b013e3181bc963c
    [15] Turnpenny PD, Sloman M, Dunwoodie S. Spondylocostal Dysostosis, Autosomal Recessive[M/OL]. (2017-12-21)[2022-05-01]. https://www.ncbi.nlm.nih.gov/books/NBK8828/pdf/Bookshelf_NBK8828.pdf.
    [16] Shen Y, Chen X, Wang L, et al. Intra-family phenotypic heterogeneity of 16p11.2 deletion carriers in a three-generation Chinese family[J]. Am J Med Genet B Neuropsychiatr Genet, 2011, 156: 225-232. doi:  10.1002/ajmg.b.31147
    [17] Wu N, Ming X, Xiao J, et al. TBX6 null variants and a common hypomorphic allele in congenital scoliosis[J]. N Engl J Med, 2015, 372: 341-350. doi:  10.1056/NEJMoa1406829
    [18] Liu J, Wu N, Deciphering Disorders Involving Scoliosis and COmorbidities (DISCO) study, et al. TBX6-associated congenital scoliosis (TACS) as a clinically distinguishable subtype of congenital scoliosis: further evidence supporting the compound inheritance and TBX6 gene dosage model[J]. Genet Med, 2019, 21: 1548-1558. doi:  10.1038/s41436-018-0377-x
    [19] Lefebvre M, Duffourd Y, Jouan T, et al. Autosomal recessive variations of TBX6, from congenital scoliosis to spondylocostal dysostosis[J]. Clin Genet, 2017, 91: 908-912. doi:  10.1111/cge.12918
    [20] Takeda K, Kou I, Kawakami N, et al. Compound Heterozygosity for Null Mutations and a Common Hypomorphic Risk Haplotype in TBX6 Causes Congenital Scoliosis[J]. Hum Mutat, 2017, 38: 317-323. doi:  10.1002/humu.23168
    [21] Otomo N, Takeda K, Kawai S, et al. Bi-allelic loss of function variants of TBX6 causes a spectrum of malformation of spine and rib including congenital scoliosis and spondylocostal dysostosis[J]. J Med Genet, 2019, 56: 622-628. doi:  10.1136/jmedgenet-2018-105920
    [22] Chen W, Lin J, Wang L, et al. TBX6 missense variants expand the mutational spectrum in a non-Mendelian inheritance disease[J]. Hum Mutat, 2020, 41: 182-195. doi:  10.1002/humu.23907
    [23] Feng X, Cheung JPY, Je JSH, et al. Genetic variants of TBX6 and TBXT identified in patients with congenital scoliosis in Southern China[J]. J Orthop Res, 2021, 39: 971-988. doi:  10.1002/jor.24805
    [24] Yang N, Wu N, Zhang L, et al. TBX6 compound inheritance leads to congenital vertebral malformations in humans and mice[J]. Hum Mol Genet, 2019, 28: 539-547. doi:  10.1093/hmg/ddy358
    [25] Ren X, Yang N, Wu N, et al. Increased TBX6 gene dosages induce congenital cervical vertebral malformations in humans and mice[J]. J Med Genet, 2020, 57: 371-379. doi:  10.1136/jmedgenet-2019-106333
    [26] Chen Z, Yan Z, Yu C, et al. Cost-effectiveness analysis of using the TBX6-associated congenital scoliosis risk score (TACScore) in genetic diagnosis of congenital scoliosis[J]. Orphanet J Rare Dis, 2020, 15: 250. doi:  10.1186/s13023-020-01537-y
    [27] Chen Z, Zheng Y, Yang Y, et al. PhenoApt leverages clinical expertise to prioritize candidate genes via machine learning[J]. Am J Hum Genet, 2022, 109: 270-281. doi:  10.1016/j.ajhg.2021.12.008
  • 加载中
计量
  • 文章访问数:  35
  • HTML全文浏览量:  1
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-20
  • 录用日期:  2022-07-13
  • 网络出版日期:  2022-08-02
  • 刊出日期:  2022-09-30

目录

    /

    返回文章
    返回

    【通知】尊敬的读者、作者及编者:因特殊原因,本站自2022.9.30至10.24日期间实施6—24点开放,其他时段访问受限,给您带来不便敬请谅解!10.25日恢复如常。