留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

孤独症谱系障碍患儿不同血清总25-羟维生素D水平与肠道菌群的差异性研究

罗欣 庞琨 陈建雄 王泓哲 徐新杰 李兵 贾鑫淼 尤欣

罗欣, 庞琨, 陈建雄, 王泓哲, 徐新杰, 李兵, 贾鑫淼, 尤欣. 孤独症谱系障碍患儿不同血清总25-羟维生素D水平与肠道菌群的差异性研究[J]. 协和医学杂志, 2022, 13(5): 812-820. doi: 10.12290/xhyxzz.2022-0254
引用本文: 罗欣, 庞琨, 陈建雄, 王泓哲, 徐新杰, 李兵, 贾鑫淼, 尤欣. 孤独症谱系障碍患儿不同血清总25-羟维生素D水平与肠道菌群的差异性研究[J]. 协和医学杂志, 2022, 13(5): 812-820. doi: 10.12290/xhyxzz.2022-0254
LUO Xin, PANG Kun, CHEN Jianxiong, WANG Hongzhe, XU Xinjie, LI Bing, JIA Xinmiao, YOU Xin. Differences of Intestinal Flora in Children with Autism Spectrum Disorder with Different Levels of Serum Total 25-hydroxyvitamin D[J]. Medical Journal of Peking Union Medical College Hospital, 2022, 13(5): 812-820. doi: 10.12290/xhyxzz.2022-0254
Citation: LUO Xin, PANG Kun, CHEN Jianxiong, WANG Hongzhe, XU Xinjie, LI Bing, JIA Xinmiao, YOU Xin. Differences of Intestinal Flora in Children with Autism Spectrum Disorder with Different Levels of Serum Total 25-hydroxyvitamin D[J]. Medical Journal of Peking Union Medical College Hospital, 2022, 13(5): 812-820. doi: 10.12290/xhyxzz.2022-0254

孤独症谱系障碍患儿不同血清总25-羟维生素D水平与肠道菌群的差异性研究

doi: 10.12290/xhyxzz.2022-0254
基金项目: 

中国医学科学院医学与健康科技创新工程 2017-I2M-3-017

中国医学科学院中央级公益性科研院所基本科研业务费专项资金 2019XK320030

详细信息
    通讯作者:

    贾鑫淼, E-mail: jiaxinmiaohappy@126.com

    尤欣, E-mail: youxin@pumch.cn

  • 中图分类号: R593;R378

Differences of Intestinal Flora in Children with Autism Spectrum Disorder with Different Levels of Serum Total 25-hydroxyvitamin D

Funds: 

CAMS Innovation Fund for Medical Sciences 2017-I2M-3-017

Non-profit Central Research Institute Fund of Chinese Academy of Medical Sciences 2019XK320030

More Information
  • 摘要:   目的  探究孤独症谱系障碍(autism spectrum disorder,ASD)患儿维生素D正常与缺乏状态下的肠道菌群差异及血清总25-羟维生素D[total 25-hydroxyvitamin D,T-25(OH)D]水平与肠道菌群的相关性。  方法  回顾性纳入2019年10月至2022年2月于北京协和医院风湿免疫科门诊就诊的1~12岁ASD患儿的临床资料。采用液相色谱串联质谱法检测ASD患儿的血清T- 25(OH)D水平,并根据血清T- 25(OH)D水平将其分为维生素D正常组[T-25(OH)D>30 μg/L]、不足组[20 μg/L≤T-25(OH)D ≤30 μg/L]和缺乏组[T-25(OH)D<20 μg/L]。应用生物信息学方法分析ASD患儿的肠道宏基因组测序结果。  结果  共46例符合纳入和排除标准的ASD患儿纳入本研究,维生素D正常组、不足组、缺乏组分别为15例、16例、15例。线性判别分析发现,维生素D缺乏组的沃氏嗜胆菌、Adlercreutzia equolifaciensAsaccharobacter celatus、大肠埃希菌显著升高;而脆弱拟杆菌和Hungatella hathewayi丰度显著降低。沃氏嗜胆菌和Adlercreutzia equolifaciens丰度与血清T- 25(OH)D水平均呈负相关(r=-0.45, fdr=0.055, P=0.002; r=-0.44, fdr=0.055, P=0.003);脆弱拟杆菌丰度与血清T- 25(OH)D水平呈正相关(r=0.42, fdr=0.073, P=0.004)。  结论  ASD患儿的维生素D缺乏状态可能加重肠道菌群紊乱,血清T-25(OH)水平降低可能使潜在有害菌定植增加、益生菌定植减少。本研究为ASD患儿积极补充维生素D提供了证据支持。
    作者贡献:罗欣负责数据处理和论文撰写;庞琨、陈建雄、王泓哲负责数据处理;徐新杰、李兵负责研究指导;贾鑫淼和尤欣负责研究设计、论文修订与审核。
    利益冲突:所有作者均声明不存在利益冲突
  • 图  1  孤独症谱系障碍患儿肠道菌群物种丰度和香农指数箱线图

    图  2  基于加权UniFrac距离的β多样性分析

    PCoA:主坐标分析

    图  3  孤独症谱系障碍患儿肠道菌群差异分类进化树

    注:由内至外辐射的圆点代表了菌群由界至种的分类水平,不同水平上的每个圆点代表了该水平上的一个分类群,每个圆点的大小与该分类群的相对丰度成正比,红色圆点代表维生素D缺乏组中显著升高的分类群,绿色圆点代表维生素D正常组中显著升高的分类群,黄色圆点为无显著差异的分类群

    图  4  孤独症谱系障碍患儿肠道菌群物种水平的线性判别分析

    注:LDA Score阈值为2

    图  5  血清总25-羟维生素D水平与物种相对丰度关系

    表  1  ASD患儿一般临床资料

    组别 男性[n(%)] 年龄(x±s,岁) CARS评分(x±s) 重度ASD[n(%)]
    维生素D正常组(n=15) 12(80.0) 3.20±1.859 39.00±5.928 10(66.7)
    维生素D不足组(n=16) 11(68.8) 3.44±1.459 41.69±6.681 12(75.0)
    维生素D缺乏组(n=15) 11(73.3) 4.40±1.056 39.67±6.619 10(66.7)
    组别 胃肠道症状[n(%)] 挑食[n(%)] 兴奋[n(%)] 过敏[n(%)] 情绪问题[n(%)]
    维生素D正常组(n=15) 15(100) 12(80.0) 15(100) 14(93.3) 12(80.0)
    维生素D不足组(n=16) 15(93.8) 15(93.8) 16(100) 12(75.0) 14(87.5)
    维生素D缺乏组(n=15) 15(100) 13(86.7) 15(100) 12(80.0) 13(86.7)
    ASD: 孤独症谱系障碍;CARS:儿童孤独症评定量表
    下载: 导出CSV

    表  2  孤独症谱系障碍患儿肠道菌群β多样性分析

    分组 置换多元方差分析
    R2 P
    维生素D缺乏组比正常组 0.0387 0.291
    维生素D不足组比正常组 0.0266 0.541
    维生素D不足组比缺乏组 0.0316 0.382
    下载: 导出CSV
  • [1] 中华医学会儿科学分会发育行为学组, 中国医师协会儿科分会儿童保健专业委员会, 儿童孤独症诊断与防治技术和标准研究项目专家组. 孤独症谱系障碍儿童早期识别筛查和早期干预专家共识[J]. 中华儿科杂志, 2017, 55: 890-897. doi:  10.3760/cma.j.issn.0578-1310.2017.12.004
    [2] 中华医学会儿科学分会发育行为学组, 中国医师协会儿科分会儿童保健专业委员会, 儿童孤独症诊断与防治技术和标准研究项目专家组. 孤独症谱系障碍患儿常见共患问题的识别与处理原则[J]. 中华儿科杂志, 2018, 56: 174-178. doi:  10.3760/cma.j.issn.0578-1310.2018.03.004
    [3] Saurman V, Margolis KG, Luna RA. Autism Spectrum Disorder as a Brain-Gut-Microbiome Axis Disorder[J]. Dig Dis Sci, 2020, 65: 818-828. doi:  10.1007/s10620-020-06133-5
    [4] Cryan JF, O'riordan KJ, Cowan CSM, et al. The Microbiota-Gut-Brain Axis[J]. Physiol Rev, 2019, 99: 1877-2013. doi:  10.1152/physrev.00018.2018
    [5] Li N, Chen H, Cheng Y, et al. Fecal Microbiota Transplantation Relieves Gastrointestinal and Autism Symptoms by Improving the Gut Microbiota in an Open-Label Study[J]. Front Cell Infect Microbiol, 2021, 11: 759435. doi:  10.3389/fcimb.2021.759435
    [6] Murdaca G, Gerosa A, Paladin F, et al. Vitamin D and Microbiota: Is There a Link with Allergies?[J]. Int J Mol Sci, 2021, 22: 4288. doi:  10.3390/ijms22084288
    [7] Malaguarnera L. Vitamin D and microbiota: Two sides of the same coin in the immunomodulatory aspects[J]. Int Immunopharmacol, 2020, 79: 106112. doi:  10.1016/j.intimp.2019.106112
    [8] Wong M. What has happened in the last 50 years in immunology[J]. J Paediatr Child Health, 2015, 51: 135-139. doi:  10.1111/jpc.12834
    [9] Bellerba F, Muzio V, Gnagnarella P, et al. The Associa-tion between Vitamin D and Gut Microbiota: A Systematic Review of Human Studies[J]. Nutrients, 2021, 13: 3378. doi:  10.3390/nu13103378
    [10] Feng J, Shan L, Du L, et al. Clinical improvement following vitamin D3 supplementation in autism spectrum disorder[J]. Nutr Neurosci, 2017, 20: 284-290. doi:  10.1080/1028415X.2015.1123847
    [11] American Psychiatric Association. Diagnostic and statistical manual of mental disorders: DSM-5[M]. 5th ed. Washington DC: American Psychiatric Association, 2013: 50-59.
    [12] Holick MF, Binkley NC, Bischoff-Ferrari HA, et al. Evaluation, treatment, and prevention of vitamin D deficiency: an Endocrine Society clinical practice guideline[J]. J Clin Endocrinol Metab, 2011, 96: 1911-1930. doi:  10.1210/jc.2011-0385
    [13] Society for Adolescent Health and Medicine. Recommended vitamin D intake and management of low vitamin D status in adolescents: a position statement of the society for adolescent health and medicine[J]. J Adolesc Health, 2013, 52: 801-803. doi:  10.1016/j.jadohealth.2013.03.022
    [14] Yu S, Zhang R, Zhou W, et al. Is it necessary for all samples to quantify 25OHD2 and 25OHD3 using LC-MS/MS in clinical practice?[J]. Clin Chem Lab Med, 2018, 56: 273-277. doi:  10.1515/cclm-2017-0520
    [15] Krueger F. Trim Galore, V. 0.6.2[EB/OL]. (2019-05-08)[2022-05-10]. http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/.
    [16] Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2[J]. Nat Methods, 2012, 9: 357-359. doi:  10.1038/nmeth.1923
    [17] Danecek P, Bonfield JK, Liddle J, et al. Twelve years of SAMtools and BCFtools[J]. Gigascience, 2021, 10: giab008. doi:  10.1093/gigascience/giab008
    [18] Quinlan AR. BEDTools: the Swiss-army tool for genome feature analysis[J]. Curr Protoc Bioinform, 2014, 47: 11.12.1-11.12.34.
    [19] Casper J, Zweig AS, Villarreal C, et al. The UCSC genome browser database: 2018 update[J]. Nucleic Acids Res, 2018, 46: D762-D769. doi:  10.1093/nar/gkx1020
    [20] Beghini F, Mciver LJ, Blanco-Míguez A, et al. Integrat-ing taxonomic, functional, and strain-level profiling of diverse microbial communities with bioBakery 3[J]. Elife, 2021, 10: e65088. doi:  10.7554/eLife.65088
    [21] Segata N, Izard J, Waldron L, et al. Metagenomic biomarker discovery and explanation[J]. Genome Biol, 2011, 12: R60. doi:  10.1186/gb-2011-12-6-r60
    [22] Singh P, Kumar M, Al Khodor S. Vitamin D Deficiency in the Gulf Cooperation Council: Exploring the Triad of Genetic Predisposition, the Gut Microbiome and the Immune System[J]. Front Immunol, 2019, 10: 1042. doi:  10.3389/fimmu.2019.01042
    [23] Yamamoto E, Jørgensen TN. Immunological effects of vitamin D and their relations to autoimmunity[J]. J Autoimmun, 2019, 100: 7-16. doi:  10.1016/j.jaut.2019.03.002
    [24] Yamamoto EA, Jørgensen TN. Relationships between vitamin D, gut microbiome, and systemic autoimmunity[J]. Front Immunol, 2020, 10: 3141. doi:  10.3389/fimmu.2019.03141
    [25] Reboul E. Intestinal absorption of vitamin D: from the meal to the enterocyte[J]. Food Funct, 2015, 6: 356-362. doi:  10.1039/C4FO00579A
    [26] Bora SA, Kennett MJ, Smith PB, et al. The Gut Microbiota Regulates Endocrine Vitamin D Metabolism through Fibroblast Growth Factor 23[J]. Front Immunol, 2018, 9: 408. doi:  10.3389/fimmu.2018.00408
    [27] Leeming ER, Johnson AJ, Spector TD, et al. Effect of Diet on the Gut Microbiota: Rethinking Intervention Duration[J]. Nutrients, 2019, 11: 2862. doi:  10.3390/nu11122862
    [28] Saad K, Abdel-Rahman AA, Elserogy YM, et al. Vitamin D status in autism spectrum disorders and the efficacy of vitamin D supplementation in autistic children[J]. Nutr Neurosci, 2016, 19: 346-351. doi:  10.1179/1476830515Y.0000000019
    [29] Mazahery H, Conlon CA, Beck KL, et al. A randomised controlled trial of vitamin D and omega-3 long chain polyunsaturated fatty acids in the treatment of irritability and hyperactivity among children with autism spectrum disorder[J]. J Steroid Biochem Mol Biol, 2019, 187: 9-16. doi:  10.1016/j.jsbmb.2018.10.017
    [30] Caplan A, Walker L, Rasquin A. Development and Preliminary Validation of the Questionnaire on Pediatric Gastrointestinal Symptoms to Assess Functional Gastrointestinal Disorders in Children and Adolescents[J]. J Pediatr Gastroenterol Nutr, 2005, 41: 296-304. doi:  10.1097/01.mpg.0000172748.64103.33
    [31] Munk DD, Repp AC. Behavioral assessment of feeding problems of individuals with severe disabilities[J]. J Appl Behav Anal, 1994, 27: 241-250. doi:  10.1901/jaba.1994.27-241
    [32] Waite DW, Chuvochina M, Pelikan C, et al. Proposal to reclassify the proteobacterial classes Deltaproteobacteria and Oligoflexia, and the phylum Thermodesulfobacteria into four phyla reflecting major functional capabilities[J]. Int J Syst Evol Microbiol, 2020, 70: 5972-6016. doi:  10.1099/ijsem.0.004213
    [33] Pulikkan J, Maji A, Dhakan DB, et al. Gut microbial dysbiosis in Indian children with autism spectrum disorders[J]. Microb Ecol, 2018, 76: 1102-1114. doi:  10.1007/s00248-018-1176-2
    [34] Tomova A, Husarova V, Lakatosova S, et al. Gastrointestinal microbiota in children with autism in Slovakia[J]. Physiol Behav, 2015, 138: 179-187. doi:  10.1016/j.physbeh.2014.10.033
    [35] Liu S, Li E, Sun Z, et al. Altered gut microbiota and short chain fatty acids in Chinese children with autism spectrum disorder[J]. Sci Rep, 2019, 9: 287. doi:  10.1038/s41598-018-36430-z
    [36] Mitsui R, Ono S, Karaki S, et al. Neural and non-neural mediation of propionate-induced contractile responses in the rat distal colon[J]. Neurogastroenterol Motil, 2005, 17: 585-594. doi:  10.1111/j.1365-2982.2005.00669.x
    [37] Murros KE. Hydrogen Sulfide Produced by Gut Bacteria May Induce Parkinson's Disease[J]. Cells, 2022, 11: 978. doi:  10.3390/cells11060978
    [38] Feng Z, Long W, Hao B, et al. A human stool-derived Bilophila wadsworthia strain caused systemic inflammation in specific-pathogen-free mice[J]. Gut Pathogens, 2017, 9: 59. doi:  10.1186/s13099-017-0208-7
    [39] Laue HE, Korrick SA, Baker ER, et al. Prospective associations of the infant gut microbiome and microbial function with social behaviors related to autism at age 3 years[J]. Sci Rep, 2020, 10: 15515. doi:  10.1038/s41598-020-72386-9
    [40] Rosenfeld CS. Effects of phytoestrogens on the developing brain, gut microbiota, and risk for neurobehavioral disorders[J]. Front Nutr, 2019, 6: 142. doi:  10.3389/fnut.2019.00142
    [41] Gilad LA, Tirosh O, Schwartz B. Phytoestrogens regulate transcription and translation of vitamin D receptor in colon cancer cells[J]. J Endocrinol, 2006, 191: 387-398. doi:  10.1677/joe.1.06930
    [42] Assa A, Vong L, Pinnell LJ, et al. Vitamin D Deficiency Predisposes to Adherent-invasive Escherichia coli-induced Barrier Dysfunction and Experimental Colonic Injury[J]. Inflamm Bowel Dis, 2015, 21: 297-306. doi:  10.1097/MIB.0000000000000282
    [43] Zou R, Xu F, Wang Y, et al. Changes in the gut microbiota of children with autism spectrum disorder[J]. Autism Res, 2020, 13: 1614-1625. doi:  10.1002/aur.2358
    [44] Hsiao EY, Mcbride SW, Hsien S, et al. Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders[J]. Cell, 2013, 155: 1451-1463. doi:  10.1016/j.cell.2013.11.024
    [45] Sun J. Dietary vitamin D, vitamin D receptor, and microbiome[J]. Curr Opin Clin Nutr Metab Care, 2018, 21: 471-474. doi:  10.1097/MCO.0000000000000516
    [46] Kaur S, Yawar M, Kumar PA, et al. Hungatella effluvii gen. nov., sp. nov., an obligately anaerobic bacterium isolated from an effluent treatment plant, and reclassification of Clostridium hathewayi as Hungatella hathewayi gen. nov., comb. nov[J]. Int J Syst Evol Microbiol, 2014, 64: 710-718. doi:  10.1099/ijs.0.056986-0
    [47] Ohara T. Identification of the microbial diversity after fecal microbiota transplantation therapy for chronic intractable constipation using 16s rRNA amplicon sequencing[J]. PLoS One, 2019, 14: e0214085. doi:  10.1371/journal.pone.0214085
    [48] Chan CWH, Leung TF, Choi KC, et al. Association of early-life gut microbiome and lifestyle factors in the development of eczema in Hong Kong infants[J]. Exp Dermatol, 2021, 30: 859-864. doi:  10.1111/exd.14280
    [49] Ooi JH, Li Y, Rogers CJ, et al. Vitamin D regulates the gut microbiome and protects mice from dextran sodium sulfate-induced colitis[J]. J Nutr, 2013, 143: 1679-1686. doi:  10.3945/jn.113.180794
  • 加载中
图(5) / 表(2)
计量
  • 文章访问数:  26
  • HTML全文浏览量:  4
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-13
  • 录用日期:  2022-06-27
  • 网络出版日期:  2022-08-02
  • 刊出日期:  2022-09-30

目录

    /

    返回文章
    返回

    【通知】尊敬的读者、作者及编者:因特殊原因,本站自2022.9.30至10.24日期间实施6—24点开放,其他时段访问受限,给您带来不便敬请谅解!10.25日恢复如常。