留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

2021年度我国脑胶质瘤领域研究进展

陈雯琳 王雅宁 邢浩 梁庭毓 石易鑫 王海 杨蕙钰 刘千舒 李俊霖 郭晓鹏 王裕 马文斌

陈雯琳, 王雅宁, 邢浩, 梁庭毓, 石易鑫, 王海, 杨蕙钰, 刘千舒, 李俊霖, 郭晓鹏, 王裕, 马文斌. 2021年度我国脑胶质瘤领域研究进展[J]. 协和医学杂志, 2022, 13(5): 760-767. doi: 10.12290/xhyxzz.2022-0235
引用本文: 陈雯琳, 王雅宁, 邢浩, 梁庭毓, 石易鑫, 王海, 杨蕙钰, 刘千舒, 李俊霖, 郭晓鹏, 王裕, 马文斌. 2021年度我国脑胶质瘤领域研究进展[J]. 协和医学杂志, 2022, 13(5): 760-767. doi: 10.12290/xhyxzz.2022-0235
CHEN Wenlin, WANG Yaning, XING Hao, LIANG Tingyu, SHI Yixin, WANG Hai, YANG Huiyu, LIU Qianshu, LI Junlin, GUO Xiaopeng, WANG Yu, MA Wenbin. Annual Research Progress of Glioma in China in 2021[J]. Medical Journal of Peking Union Medical College Hospital, 2022, 13(5): 760-767. doi: 10.12290/xhyxzz.2022-0235
Citation: CHEN Wenlin, WANG Yaning, XING Hao, LIANG Tingyu, SHI Yixin, WANG Hai, YANG Huiyu, LIU Qianshu, LI Junlin, GUO Xiaopeng, WANG Yu, MA Wenbin. Annual Research Progress of Glioma in China in 2021[J]. Medical Journal of Peking Union Medical College Hospital, 2022, 13(5): 760-767. doi: 10.12290/xhyxzz.2022-0235

2021年度我国脑胶质瘤领域研究进展

doi: 10.12290/xhyxzz.2022-0235
基金项目: 

国家自然科学基金 82151302

北京市自然科学基金 7202150

北京市自然科学基金 19JCZDJC64200(Z)

清华大学-北京协和医院合作课题 2019ZLH101

详细信息
    通讯作者:

    马文斌, E-mail: mawb2001@hotmail.com

  • 中图分类号: R739.41

Annual Research Progress of Glioma in China in 2021

Funds: 

National Natural Science Foundation of China 82151302

Beijing Municipal Natural Science Foundation 7202150

Beijing Municipal Natural Science Foundation 19JCZDJC64200(Z)

Tsinghua University-Peking Union Medical College Hospital Initiative Scientific Research Program 2019ZLH101

More Information
  • 摘要: 脑胶质瘤为发病率最高的中枢神经系统原发性恶性肿瘤,恶性程度高,患者预后差。目前,脑胶质瘤领域的研究主要聚焦于肿瘤发生机制探究、新治疗手段及药物研发方面,在胶质瘤分子病理分型优化、影像检查诊断技术提升及综合治疗指南制订方面亦开展了深入研究。本文将对2021年度我国脑胶质瘤领域的研究成果及重要进展进行阐述,并对未来可能的研究方向进行展望,以期为临床研究提供借鉴和参考。
    作者贡献:陈雯琳、王雅宁、邢浩、梁庭毓、石易鑫、王海、杨蕙钰、刘千舒、李俊霖负责文献资料收集和论文初稿撰写;陈雯琳、郭晓鹏负责论文修订及整理;王裕、马文斌负责论文构思、写作指导及修订。
    利益冲突:所有作者均声明不存在利益冲突
  • [1] Sung H, Ferlay J, Siegel RL, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries[J]. CA Cancer J Clin, 2021, 71: 209-249. doi:  10.3322/caac.21660
    [2] Chen F, Wendl MC, Wyczalkowski MA, et al. Moving pan-cancer studies from basic research toward the clinic[J]. Nat Cancer, 2021, 2: 879-890. doi:  10.1038/s43018-021-00250-4
    [3] Stupp R, Hegi ME, Mason WP, et al. Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase Ⅲ study: 5-year analysis of the EORTC-NCIC trial[J]. Lancet Oncol, 2009, 10: 459-466. doi:  10.1016/S1470-2045(09)70025-7
    [4] Stupp R, Taillibert S, Kanner A, et al. Effect of Tumor-Treating Fields Plus Maintenance Temozolomide vs Maintenance Temozolomide Alone on Survival in Patients With Glioblastoma: A Randomized Clinical Trial[J]. JAMA, 2017, 318: 2306-2316. doi:  10.1001/jama.2017.18718
    [5] Louis DN, Perry A, Wesseling P, et al. The 2021 WHO Classification of Tumors of the Central Nervous System: a summary[J]. Neuro Oncol, 2021, 23: 1231-1251. doi:  10.1093/neuonc/noab106
    [6] Wong QH, Li KK, Wang WW, et al. Molecular landscape of IDH-mutant primary astrocytoma Grade Ⅳ/glioblastomas[J]. Mod Pathol, 2021, 34: 1245-1260. doi:  10.1038/s41379-021-00778-x
    [7] Jin L, Shi F, Chun Q, et al. Artificial intelligence neuropathologist for glioma classification using deep learning on hematoxylin and eosin stained slide images and molecular markers[J]. Neuro Oncol, 2021, 23: 44-52. doi:  10.1093/neuonc/noaa163
    [8] Wen PY, Packer RJ. The 2021 WHO Classification of Tumors of the Central Nervous System: clinical implications[J]. Neuro Oncol, 2021, 23: 1215-1217. doi:  10.1093/neuonc/noab120
    [9] Mohile NA, Messersmith H, Gatson NT, et al. Therapy for Diffuse Astrocytic and Oligodendroglial Tumors in Adults: ASCO-SNO Guideline[J]. J Clin Oncol, 2022, 40: 403-426.
    [10] Jiang T, Nam DH, Ram Z, et al. Clinical practice guidelines for the management of adult diffuse gliomas[J]. Cancer Lett, 2021, 499: 60-72. doi:  10.1016/j.canlet.2020.10.050
    [11] Gao A, Zhang H, Yan X, et al. Whole-Tumor Histogram Analysis of Multiple Diffusion Metrics for Glioma Genotyping[J]. Radiology, 2022, 302: 652-661. doi:  10.1148/radiol.210820
    [12] Sun Q, Chen Y, Liang C, et al. Biologic Pathways Underlying Prognostic Radiomics Phenotypes from Paired MRI and RNA Sequencing in Glioblastoma[J]. Radiology, 2021, 301: 654-663. doi:  10.1148/radiol.2021203281
    [13] Xie R, Wu Z, Zeng F, et al. Retro-enantio isomer of angiopep-2 assists nanoprobes across the blood-brain barrier for targeted magnetic resonance/fluorescence imaging of glio-blastoma[J]. Signal Transduct Target Ther, 2021, 6: 309. doi:  10.1038/s41392-021-00724-y
    [14] Yang J, Zhao C, Lim J, et al. Structurally symmetric near-infrared fluorophore IRDye78-protein complex enables multimodal cancer imaging[J]. Theranostics, 2021, 11: 2534-2549. doi:  10.7150/thno.54928
    [15] Li Z, Kong Z, Chen J, et al. (18)F-Boramino acid PET/CT in healthy volunteers and glioma patients[J]. Eur J Nucl Med Mol Imaging, 2021, 48: 3113-3121. doi:  10.1007/s00259-021-05212-7
    [16] Zhang Y, Xi K, Fu X, et al. Versatile metal-phenolic network nanoparticles for multitargeted combination therapy and magnetic resonance tracing in glioblastoma[J]. Biomaterials, 2021, 278: 121163. doi:  10.1016/j.biomaterials.2021.121163
    [17] Huang N, Li F, Zhang M, et al. An Upstream Open Reading Frame in Phosphatase and Tensin Homolog Encodes a Circuit Breaker of Lactate Metabolism[J]. Cell Metab, 2021, 33: 128-144. e9. doi:  10.1016/j.cmet.2020.12.008
    [18] Wu X, Xiao S, Zhang M, et al. A novel protein encoded by circular SMO RNA is essential for Hedgehog signaling activation and glioblastoma tumorigenicity[J]. Genome Biol, 2021, 22: 33. doi:  10.1186/s13059-020-02250-6
    [19] Wang X, Zhou R, Xiong Y, et al. Sequential fate-switches in stem-like cells drive the tumorigenic trajectory from human neural stem cells to malignant glioma[J]. Cell Res, 2021, 31: 684-702. doi:  10.1038/s41422-020-00451-z
    [20] 中国医师协会脑胶质瘤专业委员会, 中国抗癌协会脑胶质瘤专业委员会, 中国脑胶质瘤协作组. 成人丘脑胶质瘤手术治疗中国专家共识[J]. 临床神经外科杂志, 2022, 19: 1-10. doi:  10.3969/j.issn.1672-7770.2022.01.001

    Society for NeuroOncology of China, Chinese Anti-Cancer Association Committee of the Glioma, Chinese Glioma Cooperative Group. Chinese experts consensus on surgical treatment for adult thalamus glioma[J]. Linchuang Shenjing Waike Zazhi, 2022, 19: 1-10. doi:  10.3969/j.issn.1672-7770.2022.01.001
    [21] Niu X, Yang Y, Zhou X, et al. A prognostic nomogram for patients with newly diagnosed adult thalamic glioma in a surgical cohort[J]. Neuro Oncol, 2021, 23: 337-338. doi:  10.1093/neuonc/noaa268
    [22] Hou Z, Zhang K, Liu X, et al. Molecular subtype impacts surgical resection in low-grade gliomas: A Chinese Glioma Genome Atlas database analysis[J]. Cancer Lett, 2021, 522: 14-21. doi:  10.1016/j.canlet.2021.09.008
    [23] Lu J, Zhao Z, Zhang J, et al. Functional maps of direct electrical stimulation-induced speech arrest and anomia: a multicentre retrospective study[J]. Brain, 2021, 144: 2541-2553. doi:  10.1093/brain/awab125
    [24] Sun R, Cuthbert H, Watts C. Fluorescence-Guided Surgery in the Surgical Treatment of Gliomas: Past, Present and Future[J]. Cancers (Basel), 2021, 13: 3508. doi:  10.3390/cancers13143508
    [25] Gao XY, Zang J, Zheng MH, et al. Temozolomide Treatment Induces HMGB1 to Promote the Formation of Glioma Stem Cells via the TLR2/NEAT1/Wnt Pathway in Glioblastoma[J]. Front Cell Dev Biol, 2021, 9: 620883. doi:  10.3389/fcell.2021.620883
    [26] Zheng Y, Liu L, Wang Y, et al. Glioblastoma stem cell (GSC)-derived PD-L1-containing exosomes activates AMPK/ULK1 pathway mediated autophagy to increase temozolomide-resistance in glioblastoma[J]. Cell Biosci, 2021, 11: 63. doi:  10.1186/s13578-021-00575-8
    [27] Wang Z, Wang Y, Yang T, et al. Machine learning revealed stemness features and a novel stemness-based classification with appealing implications in discriminating the prognosis, immunotherapy and temozolomide responses of 906 glioblastoma patients[J]. Brief Bioinform, 2021, 22: bbab032. doi:  10.1093/bib/bbab032
    [28] Li J, Kaneda MM, Ma J, et al. PI3Kγ inhibition suppresses microglia/TAM accumulation in glioblastoma microenvironment to promote exceptional temozolomide response[J]. Proc Natl Acad Sci U S A, 2021, 118: e2009290118. doi:  10.1073/pnas.2009290118
    [29] Li Z, Meng X, Wu P, et al. Glioblastoma Cell-Derived lncRNA-Containing Exosomes Induce Microglia to Produce Complement C5, Promoting Chemotherapy Resistance[J]. Cancer Immunol Res, 2021, 9: 1383-1399. doi:  10.1158/2326-6066.CIR-21-0258
    [30] Zhang XN, Yang KD, Chen C, et al. Pericytes augment glioblastoma cell resistance to temozolomide through CCL5-CCR5 paracrine signaling[J]. Cell Res, 2021, 31: 1072-1087. doi:  10.1038/s41422-021-00528-3
    [31] Oldrini B, Vaquero-Siguero N, Mu Q, et al. MGMT genomic rearrangements contribute to chemotherapy resis-tance in gliomas[J]. Nat Commun, 2020, 11: 3883. doi:  10.1038/s41467-020-17717-0
    [32] Shi J, Chen G, Dong X, et al. METTL3 Promotes the Resistance of Glioma to Temozolomide via Increasing MGMT and ANPG in a m6A Dependent Manner[J]. Front Oncol, 2021, 11: 702983. doi:  10.3389/fonc.2021.702983
    [33] Li F, Chen S, Yu J, et al. Interplay of m6 A and histone modifications contributes to temozolomide resistance in glioblastoma[J]. Clin Transl Med, 2021, 11: e553.
    [34] Yuan Q, Yang W, Zhang S, et al. Inhibition of mitochondrial carrier homolog 2 (MTCH2) suppresses tumor invasion and enhances sensitivity to temozolomide in malignant glioma[J]. Mol Med, 2021, 27: 7.
    [35] Yang W, Yuan Q, Zhang S, et al. Elevated GIGYF2 expression suppresses tumor migration and enhances sensitivity to temozolomide in malignant glioma[J]. Cancer Gene Ther, 2022, 29: 750-757. doi:  10.1038/s41417-021-00353-1
    [36] Wang K, Kievit FM, Chiarelli PA, et al. siRNA nanoparticle suppresses drug-resistant gene and prolongs survival in an orthotopic glioblastoma xenograft mouse model[J]. Adv Funct Mater, 2021, 31: 2007166. doi:  10.1002/adfm.202007166
    [37] Yang Q, Zhou Y, Chen J, et al. Gene Therapy for Drug-Resistant Glioblastoma via Lipid-Polymer Hybrid Nanopar-ticles Combined with Focused Ultrasound[J]. Int J Nanomedicine, 2021, 16: 185-199. doi:  10.2147/IJN.S286221
    [38] Liu Y, Bao Q, Chen Z, et al. Circumventing Drug Resistance Pathways with a Nanoparticle-Based Photodynamic Method[J]. Nano Lett, 2021, 21: 9115-9123. doi:  10.1021/acs.nanolett.1c02803
    [39] Hu H, Mu Q, Bao Z, et al. Mutational Landscape of Secondary Glioblastoma Guides MET-Targeted Trial in Brain Tumor[J]. Cell, 2018, 175: 1665-1678. e1618. doi:  10.1016/j.cell.2018.09.038
    [40] Wen PY, Stein A, van den Bent M, et al. Dabrafenib plus trametinib in patients with BRAF(V600E)-mutant low-grade and high-grade glioma (ROAR): a multicentre, open-label, single-arm, phase 2, basket trial[J]. Lancet Oncol, 2022, 23: 53-64. doi:  10.1016/S1470-2045(21)00578-7
    [41] Yang Q, Guo C, Lin X, et al. Anlotinib Alone or in Combination With Temozolomide in the Treatment of Recurrent High-Grade Glioma: A Retrospective Analysis[J]. Front Pharmacol, 2021, 12: 804942. doi:  10.3389/fphar.2021.804942
    [42] Lombardi G, De Salvo GL, Brandes AA, et al. Regora-fenib compared with lomustine in patients with relapsed glioblastoma (REGOMA): a multicentre, open-label, randomised, controlled, phase 2 trial[J]. Lancet Oncol, 2019, 20: 110-119. doi:  10.1016/S1470-2045(18)30675-2
    [43] Lim M, Xia Y, Bettegowda C, et al. Current state of immunotherapy for glioblastoma[J]. Nat Rev Clin Oncol, 2018, 15: 422-442. doi:  10.1038/s41571-018-0003-5
    [44] Fares J, Ahmed AU, Ulasov IV, et al. Neural stem cell delivery of an oncolytic adenovirus in newly diagnosed malignant glioma: a first-in-human, phase 1, dose-escalation trial[J]. Lancet Oncol, 2021, 22: 1103-1114. doi:  10.1016/S1470-2045(21)00245-X
    [45] Vitanza NA, Johnson AJ, Wilson AL, et al. Locoregional infusion of HER2-specific CAR T cells in children and young adults with recurrent or refractory CNS tumors: an interim analysis[J]. Nat Med, 2021, 27: 1544-1552. doi:  10.1038/s41591-021-01404-8
    [46] Gao X, Xia X, Li F, et al. Circular RNA-encoded oncogenic E-cadherin variant promotes glioblastoma tumorigeni-city through activation of EGFR-STAT3 signalling[J]. Nat Cell Biol, 2021, 23: 278-291. doi:  10.1038/s41556-021-00639-4
    [47] Hasan MN, Luo L, Ding D, et al. Blocking NHE1 stimulates glioma tumor immunity by restoring OXPHOS function of myeloid cells[J]. Theranostics, 2021, 11: 1295-1309. doi:  10.7150/thno.50150
    [48] Chen Q, Jin J, Huang X, et al. EMP3 mediates glioblastoma-associated macrophage infiltration to drive T cell exclusion[J]. J Exp Clin Cancer Res, 2021, 40: 160. doi:  10.1186/s13046-021-01954-2
    [49] Wang QW, Sun LH, Zhang Y, et al. MET overexpression contributes to STAT4-PD-L1 signaling activation associated with tumor-associated, macrophages-mediated immunosuppression in primary glioblastomas[J]. J Immunother Cancer, 2021, 9: e002451. doi:  10.1136/jitc-2021-002451
    [50] Amoozgar Z, Kloepper J, Ren J, et al. Targeting Treg cells with GITR activation alleviates resistance to immunotherapy in murine glioblastomas[J]. Nat Commun, 2021, 12: 2582. doi:  10.1038/s41467-021-22885-8
    [51] Cao Y, Ding S, Zeng L, et al. Reeducating Tumor-Associated Macrophages Using CpG@Au Nanocomposites to Modulate Immunosuppressive Microenvironment for Improved Radio-Immunotherapy[J]. ACS Appl Mater Interfaces, 2021, 13: 53504-53518. doi:  10.1021/acsami.1c07626
    [52] Fan Y, Cui Y, Hao W, et al. Carrier-free highly drug-loaded biomimetic nanosuspensions encapsulated by cancer cell membrane based on homology and active targeting for the treatment of glioma[J]. Bioact Mater, 2021, 6: 4402-4414. doi:  10.1016/j.bioactmat.2021.04.027
    [53] Wang Y, Jiang Y, Wei D, et al. Nanoparticle-mediated convection-enhanced delivery of a DNA intercalator to gliomas circumvents temozolomide resistance[J]. Nat Biomed Eng, 2021, 5: 1048-1058. doi:  10.1038/s41551-021-00728-7
    [54] Miao YB, Chen KH, Chen CT, et al. A Noninvasive Gut-to-Brain Oral Drug Delivery System for Treating Brain Tumors[J]. Adv Mater, 2021, 33: e2100701. doi:  10.1002/adma.202100701
    [55] Wang J, Tang W, Yang M, et al. Inflammatory tumor microenvironment responsive neutrophil exosomes-based drug delivery system for targeted glioma therapy[J]. Biomaterials, 2021, 273: 120784. doi:  10.1016/j.biomaterials.2021.120784
    [56] Zhang J, Chen C, Li A, et al. Immunostimulant hydrogel for the inhibition of malignant glioma relapse post-resection[J]. Nat Nanotechnol, 2021, 16: 538-548. doi:  10.1038/s41565-020-00843-7
    [57] Niu W, Xiao Q, Wang X, et al. A Biomimetic Drug Delivery System by Integrating Grapefruit Extracellular Vesicles and Doxorubicin-Loaded Heparin-Based Nanoparticles for Glioma Therapy[J]. Nano Lett, 2021, 21: 1484-1492. doi:  10.1021/acs.nanolett.0c04753
    [58] Liu Y, Wang X, Li J, et al. Sphingosine 1-Phosphate Liposomes for Targeted Nitric Oxide Delivery to Mediate Anticancer Effects against Brain Glioma Tumors[J]. Adv Mater, 2021, 33: e2101701. doi:  10.1002/adma.202101701
  • 加载中
计量
  • 文章访问数:  147
  • HTML全文浏览量:  4
  • PDF下载量:  70
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-26
  • 录用日期:  2022-05-24
  • 网络出版日期:  2022-06-13
  • 刊出日期:  2022-09-30

目录

    /

    返回文章
    返回

    【通知】尊敬的读者、作者及编者:因特殊原因,本站自2022.9.30至10.24日期间实施6—24点开放,其他时段访问受限,给您带来不便敬请谅解!10.25日恢复如常。