留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

药物控释体系用于局部麻醉的研究进展

龙凯 曹佩 季天骄

龙凯, 曹佩, 季天骄. 药物控释体系用于局部麻醉的研究进展[J]. 协和医学杂志, 2022, 13(3): 363-369. doi: 10.12290/xhyxzz.2022-0141
引用本文: 龙凯, 曹佩, 季天骄. 药物控释体系用于局部麻醉的研究进展[J]. 协和医学杂志, 2022, 13(3): 363-369. doi: 10.12290/xhyxzz.2022-0141
LONG Kai, CAO Pei, JI Tianjiao. Progress of Drug Controlled Release Systems for Local Anesthesia[J]. Medical Journal of Peking Union Medical College Hospital, 2022, 13(3): 363-369. doi: 10.12290/xhyxzz.2022-0141
Citation: LONG Kai, CAO Pei, JI Tianjiao. Progress of Drug Controlled Release Systems for Local Anesthesia[J]. Medical Journal of Peking Union Medical College Hospital, 2022, 13(3): 363-369. doi: 10.12290/xhyxzz.2022-0141

药物控释体系用于局部麻醉的研究进展

doi: 10.12290/xhyxzz.2022-0141
基金项目: 中科院高层次人才项目
详细信息
    通讯作者:

    季天骄, E-mail:jitj@nanoctr.cn

    龙凯、曹佩对本文同等贡献

    龙凯、曹佩对本文同等贡献

  • 中图分类号: R614

Progress of Drug Controlled Release Systems for Local Anesthesia

Funds: Financial Support of CAS
More Information
  • 摘要: 减少用药次数、延长术后镇痛时间是临床局部麻醉的重要需求。然而,无论是当前临床使用的局麻药,还是生物毒素类潜在新型麻醉药均存在时效较短的问题。利用脂质体、聚合物微球等药物载体装载局麻药进行控释,可实现药物的长效、按需释放,从而满足临床需求。本文简要概述可用于局麻药控释的药物载体,并介绍具有代表性的药物控释体系的设计、功能及其用于局部麻醉的最新研究进展,同时对此研究领域的挑战及未来前景进行讨论。
    作者贡献:龙凯负责查阅文献和论文撰写;曹佩负责论文撰写和修订;季天骄负责论文主题确定、论文修订。
    利益冲突:所有作者均声明不存在利益冲突
  • 图  1  局麻药递送系统功能示意图

    图  2  基于仿生思路设计的新型局麻药缓释体系

    A.新型局麻药河豚毒素及其与钠离子通道蛋白结合区域;B.含有与河豚毒素结合序列的两亲性多肽分子序列(载体分子设计);C.两亲性载体分子自组装载药示意图及载体自组装透射电镜形貌(纳米纤维);D.不同疏水基团(C12、C18、疏水氨基酸等)修饰的两亲性多肽载体对河豚毒素的缓释情况;E.优选组载体麻醉效力及对应的剂量

    图  3  纳米结构可有效延长局部滞留时间

    A.活体成像设备检测荧光标记的各组别载体信号随时间变化情况;B.源于图A荧光信号强度的定量分析,有无纳米结构的载体半衰期比较结果

  • [1] Jung RM, Rybak M, Milner P, et al. Local anesthetics and advances in their administration-an overview[J]. J Pre-Clin Clin Res, 2017, 11: 94-101. doi:  10.26444/jpccr/75153
    [2] El-Boghdadly K, Pawa A, Chin KJ. Local anesthetic systemic toxicity: current perspectives[J]. Local Reg Anesth, 2018, 11: 35-44. doi:  10.2147/LRA.S154512
    [3] Jasinski T, Migon D, Sporysz K, et al. The Density of Different Local Anesthetic Solutions, Opioid Adjuvants and Their Clinically Used Combinations: An Experimental Study[J]. Pharmaceuticals (Basel), 2021, 14: 801. doi:  10.3390/ph14080801
    [4] Zhao C, Liu A, Santamaria CM, et al. Polymer-tetrodotoxin conjugates to induce prolonged duration local anesthesia with minimal toxicity[J]. Nat Commun, 2019, 10: 2566. doi:  10.1038/s41467-019-10296-9
    [5] Hagen NA, Cantin L, Constant J, et al. Tetrodotoxin for Moderate to Severe Cancer-Related Pain: A Multicentre, Randomized, Double-Blind, Placebo-Controlled, Parallel-Design Trial[J]. Pain Res Manag, 2017, 2017: 7212713.
    [6] Visciano P, Schirone M, Berti M, et al. Marine Biotoxins: Occurrence, Toxicity, Regulatory Limits and Reference Methods[J]. Front Microbiol, 2016, 7: 1051. doi:  10.3389/fmicb.2016.01051
    [7] Belgi A, Burnley JV, MacRaild CA, et al. Alkyne-Bridged α-Conotoxin Vc1.1 Potently Reverses Mechanical Allodynia in Neuropathic Pain Models[J]. J Med Chem, 2021, 64: 3222-3233. doi:  10.1021/acs.jmedchem.0c02151
    [8] Rwei AY, Paris JL, Wang B, et al. Ultrasound-triggered local anaesthesia[J]. Nat Biomed Eng, 2017, 1: 644-653. doi:  10.1038/s41551-017-0117-6
    [9] Zhan C, Wang W, Santamaria C, et al. Ultrasensitive Phototriggered Local Anesthesia[J]. Nano Lett, 2017, 17: 660-665. doi:  10.1021/acs.nanolett.6b03588
    [10] Richard BM, Rickert DE, Doolittle D, et al. DepoFoam Bupivacaine (EXPARELTM) is Compatible Following Lidocaine: Pharmacokinetic Study in Mini-pigs[J]. FASEB, 2011, 25: 392.
    [11] 曾慧琳, 施震, 符旭东. 布比卡因脂质体注射用悬浮液Exparel临床应用研究进展[J]. 中国新药杂志, 2014, 23: 1654-1657. https://www.cnki.com.cn/Article/CJFDTOTAL-ZXYZ201414019.htm

    Zeng HL, Shi Z, Fu XD. Progress in clinical application of the bupivacaine liposome injectable suspension Exparel[J]. Zhongguo Xinyao Zazhi, 2014, 23: 1654-1657. https://www.cnki.com.cn/Article/CJFDTOTAL-ZXYZ201414019.htm
    [12] Poon W, Kingston BR, Ouyang B, et al. A framework for designing delivery systems[J]. Nat Nanotechnol, 2020, 15: 819-829. doi:  10.1038/s41565-020-0759-5
    [13] Tu Z, Zhong Y, Hu H, et al. Design of therapeutic biomaterials to control inflammation[J]. Nat Rev Mater, 2022, 28: 1-18.
    [14] Surve DH, Jindal AB. Recent advances in long-acting nanoformulations for delivery of antiretroviral drugs[J]. J Control Release, 2020, 324: 379-404. doi:  10.1016/j.jconrel.2020.05.022
    [15] Allen TM, Cullis PR. Liposomal drug delivery systems: from concept to clinical applications[J]. Adv Drug Deliv Rev, 2013, 65: 36-48. doi:  10.1016/j.addr.2012.09.037
    [16] Grimaldi N, Andrade F, Segovia N, et al. Lipid-based nanovesicles for nanomedicine[J]. Chem Soc Rev, 2016, 45: 6520-6545. doi:  10.1039/C6CS00409A
    [17] Chang HI, Yeh MK. Clinical development of liposome-based drugs: formulation, characterization, and therapeutic efficacy[J]. Int J Nanomedicine, 2012, 7: 49-60.
    [18] McAlvin JB, Padera RF, Shankarappa SA, et al. Multivesicular liposomal bupivacaine at the sciatic nerve[J]. Biomaterials, 2014, 35: 4557-4564. doi:  10.1016/j.biomaterials.2014.02.015
    [19] Epstein-Barash H, Shichor I, Kwon AH, et al. Prolonged duration local anesthesia with minimal toxicity[J]. PNAS, 2009, 106: 7125-7130. doi:  10.1073/pnas.0900598106
    [20] Liechty WB, Kryscio DR, Slaughter BV, et al. Polymers for drug delivery systems[J]. Annu Rev Chem Biomol Eng, 2010, 1: 149-173. doi:  10.1146/annurev-chembioeng-073009-100847
    [21] D'souza AA, Shegokar R. Polyethylene glycol (PEG): a versatile polymer for pharmaceutical applications[J]. Expert Opin Drug Deliv, 2016, 13: 1257-1275. doi:  10.1080/17425247.2016.1182485
    [22] Knop K, Hoogenboom R, Fischer D, et al. Poly(ethylene glycol) in drug delivery: pros and cons as well as potential alternatives[J]. Angew Chem Int Ed Engl, 2010, 49: 6288-6308. doi:  10.1002/anie.200902672
    [23] Lü JM, Wang X, Marin-Muller C, et al. Current advances in research and clinical applications of PLGA-based nanotechnology[J]. Expert Rev Mol Diagn, 2009, 9: 325-341. doi:  10.1586/erm.09.15
    [24] Danhier F, Ansorena E, Silva JM, et al. PLGA-based nanoparticles: an overview of biomedical applications[J]. J Control Release, 2012, 161: 505-522. doi:  10.1016/j.jconrel.2012.01.043
    [25] Zhang W, Xu W, Ning C, et al. Long-acting hydrogel/microsphere composite sequentially releases dexmedetomidine and bupivacaine for prolonged synergistic analgesia[J]. Biomaterials, 2018, 181: 378-391. doi:  10.1016/j.biomaterials.2018.07.051
    [26] He Y, Qin L, Fang Y, et al. Electrospun PLGA nanomembrane: A novel formulation of extended-release bupivacaine delivery reducing postoperative pain[J]. Mat Des, 2020, 193: 108768.
    [27] Khandare J, Minko T. Polymer-drug conjugates: Progress in polymeric prodrugs[J]. Prog Polym Sci, 2006, 31: 359-397. doi:  10.1016/j.progpolymsci.2005.09.004
    [28] Gu Z, Dong Y, Xu S, et al. Molecularly Imprinted Polymer-Based Smart Prodrug Delivery System for Specific Targeting, Prolonged Retention, and Tumor Microenvironment-Trig-gered Release[J]. Angew Chem Int Ed Engl, 2021, 60: 2663-2667. doi:  10.1002/anie.202012956
    [29] Dragojevic S, Ryu JS, Raucher D. Polymer-Based Pro-drugs: Improving Tumor Targeting and the Solubility of Small Molecule Drugs in Cancer Therapy[J]. Molecules, 2015, 20: 21750-21769. doi:  10.3390/molecules201219804
    [30] Tang J, Meka AK, Theivendran S, et al. Openwork@Dendritic Mesoporous Silica Nanoparticles for Lactate Depletion and Tumor Microenvironment Regulation[J]. Angew Chem Int Ed Engl, 2020, 59: 22054-22062. doi:  10.1002/anie.202001469
    [31] Xu C, Lei C, Wang Y, et al. Dendritic Mesoporous Nanoparticles: Structure, Synthesis and Properties[J]. Angew Chem Int Ed Engl, 2022, 61: e202112752.
    [32] Ghosh D, Lee Y, Thomas S, et al. M13-templated magnetic nanoparticles for targeted in vivo imaging of prostate cancer[J]. Nat Nanotechnol, 2012, 7: 677-682. doi:  10.1038/nnano.2012.146
    [33] Wang C, Chen J, Talavage T, et al. Gold nanorod/Fe3O4 nanoparticle "nano-pearl-necklaces" for simultaneous targeting, dual-mode imaging, and photothermal ablation of cancer cells[J]. Angew Chem Int Ed Engl, 2009, 48: 2759-2763. doi:  10.1002/anie.200805282
    [34] Wu M, Zhang X, Zhang W, et al. Cancer stem cell regulated phenotypic plasticity protects metastasized cancer cells from ferroptosis[J]. Nat Commun, 2022, 13: 1371. doi:  10.1038/s41467-022-29018-9
    [35] Tsvetkov P, Coy S, Petrova B, et al. Copper induces cell death by targeting lipoylated TCA cycle proteins[J]. Science, 2022, 375: 1254-1261. doi:  10.1126/science.abf0529
    [36] Ji T, Li Y, Deng X, et al. Delivery of local anaesthetics by a self-assembled supramolecular system mimicking their interactions with a sodium channel[J]. Nat Biomed Eng, 2021, 5: 1099-1109. doi:  10.1038/s41551-021-00793-y
    [37] Liu X, Situ A, Kang Y, et al. Irinotecan Delivery by Lipid-Coated Mesoporous Silica Nanoparticles Shows Improved Efficacy and Safety over Liposomes for Pancreatic Cancer[J]. ACS Nano, 2016, 10: 2702-2715. doi:  10.1021/acsnano.5b07781
    [38] Heng PWS. Controlled release drug delivery systems[J]. Pharm Dev Technol, 2018, 23: 833. doi:  10.1080/10837450.2018.1534376
    [39] Zhan C, Santamaria CM, Wang W, et al. Long-acting liposomal corneal anesthetics[J]. Biomaterials, 2018, 181: 372-377. doi:  10.1016/j.biomaterials.2018.07.054
    [40] Weldon C, Ji T, Nguyen MT, et al. Nanoscale Bupivacaine Formulations To Enhance the Duration and Safety of Intravenous Regional Anesthesia[J]. ACS Nano, 2019, 13: 18-25. doi:  10.1021/acsnano.8b05408
    [41] Liu Q, Santamaria CM, Wei T, et al. Hollow Silica Nanoparticles Penetrate the Peripheral Nerve and Enhance the Nerve Blockade from Tetrodotoxin[J]. Nano Lett, 2018, 18: 32-37. doi:  10.1021/acs.nanolett.7b02461
    [42] Sirsi SR, Borden MA. State-of-the-art materials for ultrasound-triggered drug delivery[J]. Adv Drug Deliv Rev, 2014, 72: 3-14. doi:  10.1016/j.addr.2013.12.010
    [43] Rwei AY, Wang W, Kohane DS. Photoresponsive nanoparticles for drug delivery[J]. Nano Today, 2015, 10: 451-467. doi:  10.1016/j.nantod.2015.06.004
    [44] Lee H, Song C, Baik S, et al. Device-assisted transdermal drug delivery[J]. Adv Drug Deliv Rev, 2018, 127: 35-45. doi:  10.1016/j.addr.2017.08.009
  • 加载中
图(3)
计量
  • 文章访问数:  96
  • HTML全文浏览量:  7
  • PDF下载量:  35
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-23
  • 录用日期:  2022-04-18
  • 网络出版日期:  2022-04-22
  • 刊出日期:  2022-05-30

目录

    /

    返回文章
    返回