留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

间充质干细胞在整形美容领域的应用

李竹君 王晨羽 龙笑

李竹君, 王晨羽, 龙笑. 间充质干细胞在整形美容领域的应用[J]. 协和医学杂志. doi: 10.12290/xhyxzz.2022-0036
引用本文: 李竹君, 王晨羽, 龙笑. 间充质干细胞在整形美容领域的应用[J]. 协和医学杂志. doi: 10.12290/xhyxzz.2022-0036
LI Zhujun, WANG Chenyu, LONG Xiao. Application of Mesenchymal Stem Cells in Plastic and Cosmetic Surgery[J]. Medical Journal of Peking Union Medical College Hospital. doi: 10.12290/xhyxzz.2022-0036
Citation: LI Zhujun, WANG Chenyu, LONG Xiao. Application of Mesenchymal Stem Cells in Plastic and Cosmetic Surgery[J]. Medical Journal of Peking Union Medical College Hospital. doi: 10.12290/xhyxzz.2022-0036

间充质干细胞在整形美容领域的应用

doi: 10.12290/xhyxzz.2022-0036
基金项目: 

中国医学科学院医学与健康科技创新工程(2020-I2M-C&T-A-004);国家重点研发计划(2020YFE0201600)

详细信息
    通讯作者:

    龙笑,E-mail:pumclongxiao@126.com

  • 中图分类号: R622

Application of Mesenchymal Stem Cells in Plastic and Cosmetic Surgery

Funds: 

CAMS Innovation Fund for Medical Sciences (2020-I2M-C&T-A-004)

  • 摘要:

    间充质干细胞是具有自我更新和多向分化潜能的成体干细胞,存在于脂肪、骨髓和脐带等多种组织中,能通过直接分化或旁分泌发挥修复组织缺损、促进血管生成、免疫调节、抗纤维化等多种作用。间充质干细胞在抗衰老、毛发/组织再生、创面愈合、抗纤维化等多个方面已有较为深入的研究,效果与安全性良好。未来仍需开展深入的基础研究以揭示其治疗机制,并应进行长期的临床试验随访以考察其远期安全性。

  • [1] Kulus M, Sibiak R, Stefańska K, et al. Mesenchymal Stem/Stromal Cells Derived from Human and Animal Perinatal Tissues-Origins, Characteristics, Signaling Pathways, and Clinical Trials[J]. Cells, 2021, 10:3278..
    [2] Bora P, Majumdar AS. Adipose tissue-derived stromal vascular fraction in regenerative medicine:a brief review on biology and translation[J]. Stem Cell Res Ther, 2017, 8:145.
    [3] Bagno LL, Salerno AG, Balkan W, et al. Mechanism of Action of Mesenchymal Stem Cells (MSCs):impact of delivery method[J]. Expert Opin Biol Ther, 2021:1-15.
    [4] Liu YJ, Zhang TY, Tan PC, et al. Superiority of Adipose-derived CD34+ Cells over Adiposederived Stem Cells in Promoting Ischemic Tissue Survival[J]. Stem Cell Rev Rep, 2022, 18:660-671.
    [5] Prockop DJ, Oh JY, Lee RH. Data against a Common Assumption:Xenogeneic Mouse Models Can Be Used to Assay Suppression of Immunity by Human MSCs[J]. Mol Ther, 2017, 25:1748-1756.
    [6] Li ZJ, Wang LQ, Li YZ, et al. Application of adipose-derived stem cells in treating fibrosis[J]. World J Stem Cells, 2021, 13:1747-1761.
    [7] Zhang S, Dong Z, Peng Z, et al. Anti-aging effect of adipose-derived stem cells in a mouse model of skin aging induced by D-galactose[J]. PLoS One, 2014, 9:e97573.
    [8] Pang SHM, D'rozario J, Mendonca S, et al. Mesenchymal stromal cell apoptosis is required for their therapeutic function[J]. Nat Commun, 2021, 12:6495.
    [9] de Witte SFH, Luk F, Sierra Parraga JM, et al. Immunomodulation By Therapeutic Mesenchymal Stromal Cells (MSC) Is Triggered Through Phagocytosis of MSC By Monocytic Cells[J]. Stem Cells, 2018, 36:602-615.
    [10] Qian L, Pi L, Fang BR, et al. Adipose mesenchymal stem cell-derived exosomes accelerate skin wound healing via the lncRNA H19/miR-19b/SOX9 axis[J]. Lab Invest, 2021, 101:1254-1266.
    [11] Han B, Zhang Y, Xiao Y, et al. Adipose-Derived Stem Cell-Derived Extracellular Vesicles Inhibit the Fibrosis of Fibrotic Buccal Mucosal Fibroblasts via the MicroRNA-375/FOXF1 Axis[J]. Stem Cells Int, 2021, 2021:9964159.
    [12] Li Y, Zhang J, Shi J, et al. Exosomes derived from human adipose mesenchymal stem cells attenuate hypertrophic scar fibrosis by miR-192-5p/IL-17RA/Smad axis[J]. Stem Cell Res Ther, 2021, 12:221.
    [13] Guo S, Wang T, Zhang S, et al. Adipose-derived stem cell-conditioned medium protects fibroblasts at different senescent degrees from UVB irradiation damages[J]. Mol Cell Biochem, 2020, 463:67-78.
    [14] Liang JX, Liao X, Li SH, et al. Antiaging Properties of Exosomes from Adipose-Derived Mesenchymal Stem Cells in Photoaged Rat Skin[J]. Biomed Res Int, 2020, 2020:6406395.
    [15] Li L, Ngo HTT, Hwang E, et al. Conditioned Medium from Human Adipose-Derived Mesenchymal Stem Cell Culture Prevents UVB-Induced Skin Aging in Human Keratinocytes and Dermal Fibroblasts[J]. Int J Mol Sci, 2019, 21:49.
    [16] Charles-De-Sá L, Gontijo-De-Amorim NF, Rigotti G, et al. Photoaged Skin Therapy with Adipose-Derived Stem Cells[J]. Plast Reconstr Surg, 2020, 145:1037e-1049e.
    [17] Rasko YM, Beale E, Rohrich RJ. Secondary rhytidectomy:comprehensive review and current concepts[J]. Plast Reconstr Surg, 2012, 130:1370-1378.
    [18] Pathak A, Mohan R, Rohrich RJ. Chemical Peels:Role of Chemical Peels in Facial Rejuvenation Today[J]. Plast Reconstr Surg, 2020, 145:58e-66e.
    [19] Janes LE, Connor LM, Moradi A, et al. Current Use of Cosmetic Toxins to Improve Facial Aesthetics[J]. Plast Reconstr Surg, 2021, 147:644e-657e.
    [20] Sanniec K, Afrooz PN, Burns AJ. Long-Term Assessment of Perioral Rhytide Correction with Erbium:YAG Laser Resurfacing[J]. Plast Reconstr Surg, 2019, 143:64-74.
    [21] Mckee D, Remington K, Swift A, et al. Effective Rejuvenation with Hyaluronic Acid Fillers:Current Advanced Concepts[J]. Plast Reconstr Surg, 2019, 143:1277e-1289e.
    [22] Azoury SC, Shakir S, Bucky LP, et al. Modern Fat Grafting Techniques to the Face and Neck[J]. Plast Reconstr Surg, 2021, 148:620e-633e.
    [23] Ring CM, Finney R, Avram M. Lasers, lights, and compounds for hair loss in aesthetics[J]. Clin Dermatol, 2022, 40:64-75.
    [24] Guo Y, Hu Z, Chen J, et al. Feasibility of adipose-derived therapies for hair regeneration:insights based on signaling interplay and clinical overview[J]. J Am Acad Dermatol, 2021. doi: 10.1016/j.jaad.2021.11.058.
    [25] Rivera-Gonzalez GC, Shook BA, Andrae J, et al. Skin Adipocyte Stem Cell Self-Renewal Is Regulated by a PDGFA/AKT-Signaling Axis[J]. Cell Stem Cell, 2016, 19:738-751.
    [26] Yano K, Brown L F, Detmar M. Control of hair growth and follicle size by VEGF-mediated angiogenesis[J]. J Clin Invest, 2001, 107:409-417.
    [27] Lee YJ, Park SH, Park HR, et al. Mesenchymal Stem Cells Antagonize IFN-Induced Proinflammatory Changes and Growth Inhibition Effects via Wnt/β-Catenin and JAK/STAT Pathway in Human Outer Root Sheath Cells and Hair Follicles[J]. Int J Mol Sci, 2021, 22:4581.
    [28] Ahn H, Lee SY, Jung WJ, et al. Alopecia treatment using minimally manipulated human umbilical cord-derived mesenchymal stem cells:Three case reports and review of literature[J]. World J Clin Cases, 2021, 9:3741-3751.
    [29] Czarnecka A, Odziomek A, Murzyn M, et al. Wharton's jelly-derived mesenchymal stem cells in the treatment of four patients with alopecia areata[J]. Adv Clin Exp Med, 2021, 30:211-218.
    [30] Lee YI, Kim J, Kim J, et al. The Effect of Conditioned Media From Human AdipocyteDerived Mesenchymal Stem Cells on Androgenetic Alopecia After Nonablative Fractional Laser Treatment[J]. Dermatol Surg, 2020, 46:1698-1704.
    [31] Kim SJ, Kim MJ, Lee YJ, et al. Innovative method of alopecia treatment by autologous adipose-derived SVF[J]. Stem Cell Res Ther, 2021, 12:486.
    [32] Kuhlmann C, Blum JC, Schenck TL, et al. Evaluation of the Usability of a Low-Cost 3D Printer in a Tissue Engineering Approach for External Ear Reconstruction[J]. Int J Mol Sci, 2021, 22:11667..
    [33] Torres-Guzman RA, Huayllani MT, Avila FR, et al. Application of Human Adipose-Derived Stem cells for Bone Regeneration of the Skull in Humans[J]. J Craniofac Surg, 2022, 33:360-363.
    [34] Yang Y, Kulkarni A, Soraru GD, et al. 3D Printed SiOC(N) Ceramic Scaffolds for Bone Tissue Regeneration:Improved Osteogenic Differentiation of Human Bone Marrow-Derived Mesenchymal Stem Cells[J]. Int J Mol Sci, 2021, 22:13676.
    [35] Dai T, Jiang Z, Cui C, et al. The Roles of Podoplanin-Positive/Podoplanin-Negative Cells from Adipose-Derived Stem Cells in Lymphatic Regeneration[J]. Plast Reconstr Surg, 2020, 145:420-431.
    [36] Li Z J, Yang E, Li YZ, et al. Application and prospect of adipose stem cell transplantation in treating lymphedema[J]. World J Stem Cells, 2020, 12:676-687.
    [37] Wang JW, Zhu YZ, Hu X, et al. Extracellular vesicles derived from adipose-derived stem cells accelerate diabetic wound healing by suppressing the expression of matrix metalloproteinase-9[J]. Curr Pharm Biotechnol, 2022,23:894-901.
    [38] Zhou J, Wei T, He Z. ADSCs enhance VEGFR3-mediated lymphangiogenesis via METTL3-mediated VEGF-C m(6)A modification to improve wound healing of diabetic foot ulcers[J]. Mol Med, 2021, 27:146.
    [39] Ma J, Zhang Z, Wang Y, et al. Investigation of miR-126-3p loaded on adipose stem cellderived exosomes for wound healing of full-thickness skin defects[J]. Exp Dermatol, 2022,31:362-374.
    [40] Pi L, Yang L, Fang BR, et al. Exosomal microRNA-125a-3p from human adipose-derived mesenchymal stem cells promotes angiogenesis of wound healing through inhibiting PTEN[J]. Mol Cell Biochem, 2022,477:115-127.
    [41] Tanios E, Ahmed TM, Shafik EA, et al. Efficacy of adipose-derived stromal vascular fraction cells in the management of chronic ulcers:a randomized clinical trial[J]. Regen Med, 2021, 16:975-988.
    [42] Wu Y, Liang T, Hu Y, et al. 3D bioprinting of integral ADSCs-NO hydrogel scaffolds to promote severe burn wound healing[J]. Regen Biomater, 2021, 8:rbab014.
    [43] Camargo CP, Kubrusly MS, Morais-Besteiro J, et al. The influence of adipocyte-derived stem cells (ASCs) on the ischemic epigastric flap survival in diabetic rats[J]. Acta Cir Bras, 2021, 36:e360907.
    [44] Zhang C, Wang T, Zhang L, et al. Combination of lyophilized adipose-derived stem cell concentrated conditioned medium and polysaccharide hydrogel in the inhibition of hypertrophic scarring[J]. Stem Cell Res Ther, 2021, 12:23.
    [45] Arjunan S, Gan SU, Choolani M, et al. Inhibition of growth of Asian keloid cells with human umbilical cord Wharton's jelly stem cell-conditioned medium[J]. Stem Cell Res Ther, 2020, 11:78.
    [46] Ejaz A, Epperly MW, Hou W, et al. Adipose-Derived Stem Cell Therapy Ameliorates Ionizing Irradiation Fibrosis via Hepatocyte Growth Factor-Mediated Transforming Growth Factor-β Downregulation and Recruitment of Bone Marrow Cells[J]. Stem Cells, 2019, 37:791-802.
    [47] Kodumudi V, Bibb LA, Adalsteinsson JA, et al. Emerging Therapeutics in the Management of Connective Tissue Disease. Part II. Dermatomyositis and Scleroderma[J]. J Am Acad Dermatol, 2022.
    [48] Granel B, Daumas A, Jouve E, et al. Safety, tolerability and potential efficacy of injection of autologous adipose-derived stromal vascular fraction in the fingers of patients with systemic sclerosis:an open-label phase I trial[J]. Ann Rheum Dis, 2015, 74:2175-2182.
    [49] Almadori A, Griffin M, Ryan CM, et al. Stem cell enriched lipotransfer reverses the effects of fibrosis in systemic sclerosis[J]. PLoS One, 2019, 14:e0218068.
    [50] Wang C, Long X, Si L, et al. A pilot study on ex vivo expanded autologous adipose-derived stem cells of improving fat retention in localized scleroderma patients[J]. Stem Cells Transl Med, 2021, 10:1148-1156.
    [51] Al-Shaibani MBH. Three-dimensional cell culture (3DCC) improves secretion of signaling molecules of mesenchymal stem cells (MSCs)[J]. Biotechnol Lett, 2022,44:143-155.
    [52] Jurj A, Pasca S, Braicu C, et al. Focus on organoids:cooperation and interconnection with extracellular vesicles-is this the future of in vitro modeling?[J]. Semin Cancer Biol, 2021. doi: 10.1016/j.semcancer.2021.12.002.
    [53] Ren J, Kong W, Lu F, et al. Adipose-derived stem cells (ADSCs) inhibit the expression of anti-apoptosis proteins through up-regulation of ATF4 on breast cancer cells[J]. Ann Transl Med, 2021, 9:1300.
    [54] Storti G, Scioli MG, Kim BS, et al. Mesenchymal Stem Cells in Adipose Tissue and Extracellular Vesicles in Ovarian Cancer Patients:A Bridge toward Metastatic Diffusion or a New Therapeutic Opportunity?[J]. Cells, 2021, 10:2117..
    [55] Di Franco S, Bianca P, Sardina DS, et al. Adipose stem cell niche reprograms the colorectal cancer stem cell metastatic machinery[J]. Nat Commun, 2021, 12:5006.
    [56] Hamilton G, Teufelsbauer M. Adipose-derived stromal/stem cells and extracellular vesicles for cancer therapy[J]. Expert Opin Biol Ther, 2022,22:67-78.
    [57] Chiu TL, Baskaran R, Tsai ST, et al. Intracerebral transplantation of autologous adiposederived stem cells for chronic ischemic stroke:A phase I study[J]. J Tissue Eng Regen Med, 2022,16:3-13.
    [58] Chen CF, Hu CC, Wu CT, et al. Treatment of knee osteoarthritis with intra-articular injection of allogeneic adipose-derived stem cells (ADSCs) ELIXCYTE®:a phase I/II, randomized, active-control, single-blind, multiple-center clinical trial[J]. Stem Cell Res Ther, 2021, 12:562.
    [59] Garcia-Olmo D, Gilaberte I, Binek M, et al. Follow-up Study to Evaluate the Long-term Safety and Efficacy of Darvadstrocel (Mesenchymal Stem Cell Treatment) in Patients with Perianal Fistulizing Crohn's Disease:ADMIRE-CD Phase 3 Randomized Controlled Trial[J]. Dis Colon Rectum, 2022,65:713-720.
    [60] Panés J, García-Olmo D, Van Assche G, et al. Expanded allogeneic adipose-derived mesenchymal stem cells (Cx601) for complex perianal fistulas in Crohn's disease:a phase 3 randomised, double-blind controlled trial[J]. Lancet, 2016, 3881281-1290.
    [61] Cho YJ, Kwon H, Kwon YJ, et al. Efficacy and safety of autologous adipose tissue-derived stem cell therapy for children with refractory Crohn's complex fistula:a Phase IV clinical study[J]. Ann Surg Treat Res, 2021, 101:58-64.
    [62] Cheng RJ, Xiong AJ, Li YH, et al. Mesenchymal Stem Cells:Allogeneic MSC May Be Immunosuppressive but Autologous MSC Are Dysfunctional in Lupus Patients[J]. Front Cell Dev Biol, 2019, 7:285.
    [63] Chu CF, Mao SH, Shyu VB, et al. Allogeneic Bone-Marrow Mesenchymal Stem Cell with Moldable Cryogel for Craniofacial Bone Regeneration[J]. J Pers Med, 2021, 11:1326.
  • 加载中
计量
  • 文章访问数:  12
  • HTML全文浏览量:  0
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-24
  • 网络出版日期:  2022-04-20

目录

    /

    返回文章
    返回