留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

转录因子POU3F2特性及其在肿瘤发生发展中的研究进展

马东江 邓成伍 魏成 吕秉哲 王琛

马东江, 邓成伍, 魏成, 吕秉哲, 王琛. 转录因子POU3F2特性及其在肿瘤发生发展中的研究进展[J]. 协和医学杂志, 2022, 13(5): 858-863. doi: 10.12290/xhyxzz.2022-0008
引用本文: 马东江, 邓成伍, 魏成, 吕秉哲, 王琛. 转录因子POU3F2特性及其在肿瘤发生发展中的研究进展[J]. 协和医学杂志, 2022, 13(5): 858-863. doi: 10.12290/xhyxzz.2022-0008
MA Dongjiang, DENG Chengwu, WEI Cheng, LYU Bingzhe, WANG Chen. Characteristics of Transcription Factor POU3F2 and Its Research Progress in Tumorigenesis and Development[J]. Medical Journal of Peking Union Medical College Hospital, 2022, 13(5): 858-863. doi: 10.12290/xhyxzz.2022-0008
Citation: MA Dongjiang, DENG Chengwu, WEI Cheng, LYU Bingzhe, WANG Chen. Characteristics of Transcription Factor POU3F2 and Its Research Progress in Tumorigenesis and Development[J]. Medical Journal of Peking Union Medical College Hospital, 2022, 13(5): 858-863. doi: 10.12290/xhyxzz.2022-0008

转录因子POU3F2特性及其在肿瘤发生发展中的研究进展

doi: 10.12290/xhyxzz.2022-0008
基金项目: 

甘肃省科技重大专项计划 19ZD2WA001

详细信息
    通讯作者:

    王琛, E-mail: chenwang@lzu.edu.cn

  • 中图分类号: R730.2;R730.5

Characteristics of Transcription Factor POU3F2 and Its Research Progress in Tumorigenesis and Development

Funds: 

Science and Technology Major Special Collaboration Project of Gansu Province 19ZD2WA001

More Information
  • 摘要: 近年来,随着POU家族相关基础研究的增多,发现POU结构域蛋白与细胞的发育、复制、生长和细胞周期阻滞以及分化密切相关,其中POU3F2不仅参与胚胎发育和中枢神经系统分化,还在恶性肿瘤细胞中广泛表达,并以不同的机制调节肿瘤细胞的增殖、侵袭和转移能力,进而影响肿瘤患者预后。本文就转录因子POU3F2的结构特性,以及在常见恶性肿瘤中的作用和研究进展进行阐述,探讨POU3F2与肿瘤细胞干性、肿瘤神经内分泌分化、肿瘤侵袭转移及修复损伤等的关系,并分析POU3F2在恶性肿瘤中的表达调控方式及对预后的影响,为进一步研究其在肿瘤中的调节机制提供理论基础。
    作者贡献:马东江负责论文选题、文献检索、论文构思及撰写;邓成伍、魏成、吕秉哲负责文献查阅;王琛负责论文修订。
    利益冲突:所有作者均声明不存在利益冲突
  • 图  1  OCT蛋白与八聚体DNA序列直接结合示意图

  • [1] Herr W, Sturm RA, Clerc RG, et al. The POU domain: a large conserved region in the mammalian pit-1, oct-1, oct-2, and Caenorhabditis elegans unc-86 gene products[J]. Genes Dev, 1988, 2: 1513-1516.
    [2] Wegner M, Drolet DW, Rosenfeld MG. POU-domain proteins: structure and function of developmental regulators[J]. Curr Opin Cell Biol, 1993, 5: 488-498.
    [3] Tantin D. Oct transcription factors in development and stem cells: insights and mechanisms[J]. Development, 2013, 140: 2857-2866. doi:  10.1242/dev.095927
    [4] Smit DJ, Smith AG, Parsons PG, et al. Domains of Brn-2 that mediate homodimerization and interaction with general and melanocytic transcription factors[J]. Eur J Biochem, 2000, 267: 6413-6422.
    [5] Schonemann MD, Ryan AK, McEvilly RJ, et al. Development and survival of the endocrine hypothalamus and posterior pituitary gland requires the neuronal POU domain factor Brn-2[J]. Genes Dev, 1995, 9: 3122-3135. doi:  10.1101/gad.9.24.3122
    [6] Atanasoski S, Toldo SS, Malipiero U, et al. Isolation of the human genomic brain-2/N-Oct 3 gene (POUF3) and assignment to chromosome 6q16[J]. Genomics, 1995, 26: 272-280. doi:  10.1016/0888-7543(95)80211-4
    [7] Nakai S, Kawano H, Yudate T, et al. The POU domain transcription factor Brn-2 is required for the determination of specific neuronal lineages in the hypothalamus of the mouse[J]. Genes Dev, 1995, 9: 3109-3121. doi:  10.1101/gad.9.24.3109
    [8] Louis DN, Perry A, Reifenberger G, et al. The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary[J]. Acta Neuropathol, 2016, 131: 803-820. doi:  10.1007/s00401-016-1545-1
    [9] Fujikawa A, Sugawara H, Tanaka T, et al. Targeting PTPRZ inhibits stem cell-like properties and tumorigenicity in glioblastoma cells[J]. Sci Rep, 2017, 7: 5609. doi:  10.1038/s41598-017-05931-8
    [10] Suvà ML, Rheinbay E, Gillespie SM, et al. Reconstruct-ing and reprogramming the tumor-propagating potential of glioblastoma stem-like cells[J]. Cell, 2014, 157: 580-594. doi:  10.1016/j.cell.2014.02.030
    [11] Perotti V, Baldassari P, Molla A, et al. NFATc2 is an intrinsic regulator of melanoma dedifferentiation[J]. Oncogene, 2016, 35: 2862-2872. doi:  10.1038/onc.2015.355
    [12] Yang F, Cui P, Lu Y, et al. Requirement of the transcription factor YB-1 for maintaining the stemness of cancer stem cells and reverting differentiated cancer cells into cancer stem cells[J]. Stem Cell Res Ther, 2019, 10: 233. doi:  10.1186/s13287-019-1360-4
    [13] Perdana NR, Mochtar CA, Umbas R, et al. The Risk Factors of Prostate Cancer and Its Prevention: A Literature Review[J]. Acta Med Indones, 2016, 48: 228-238.
    [14] Bishop JL, Thaper D, Vahid S, et al. The Master Neural Transcription Factor BRN2 Is an Androgen Receptor-Suppressed Driver of Neuroendocrine Differentiation in Prostate Cancer[J]. Cancer Discov, 2017, 7: 54-71. doi:  10.1158/2159-8290.CD-15-1263
    [15] Beltran H, Tomlins S, Aparicio A, et al. Aggressive variants of castration-resistant prostate cancer[J]. Clin Cancer Res, 2014, 20: 2846-2850. doi:  10.1158/1078-0432.CCR-13-3309
    [16] Bhagirath D, Yang TL, Tabatabai ZL, et al. BRN4 Is a Novel Driver of Neuroendocrine Differentiation in Castration-Resistant Prostate Cancer and Is Selectively Released in Extracellular Vesicles with BRN2[J]. Clin Cancer Res, 2019, 25: 6532-6545. doi:  10.1158/1078-0432.CCR-19-0498
    [17] Fenner A. Prostate cancer: BRN2 is a neuroendocrine driver[J]. Nat Rev Urol, 2017, 14: 10.
    [18] Bhattacharjee A, Richards WG, Staunton J, et al. Classification of human lung carcinomas by mRNA expression profiling reveals distinct adenocarcinoma subclasses[J]. Proc Natl Acad Sci U S A, 2001, 98: 13790-13795. doi:  10.1073/pnas.191502998
    [19] Ishii J, Sato H, Yazawa T, et al. Class Ⅲ/Ⅳ POU transcription factors expressed in small cell lung cancer cells are involved in proneural/neuroendocrine differentiation[J]. Pathol Int, 2014, 64: 415-422. doi:  10.1111/pin.12198
    [20] Ishii J, Sato H, Sakaeda M, et al. POU domain transcription factor BRN2 is crucial for expression of ASCL1, ND1 and neuroendocrine marker molecules and cell growth in small cell lung cancer[J]. Pathol Int, 2013, 63: 158-168. doi:  10.1111/pin.12042
    [21] Sakaeda M, Sato H, Ishii J, et al. Neural lineage-specific homeoprotein BRN2 is directly involved in TTF1 expression in small-cell lung cancer[J]. Lab Invest, 2013, 93: 408-421. doi:  10.1038/labinvest.2013.2
    [22] He Y, Peng X, Zheng L, et al. Asiaticoside inhibits epithelial-mesenchymal transition and stem cell-like properties of pancreatic cancer PANC-1 cells by blocking the activation of p65 and p38MAPK[J]. J Gastrointest Oncol, 2021, 12: 196-206. doi:  10.21037/jgo-20-533
    [23] Luan Z, Morimoto Y, Fushimi A, et al. MUC1-C Dictates Neuroendocrine Lineage Specification in Pancreatic Ductal Adenocarcinomas[J]. Carcinogenesis, 2022, 43: 67-76. doi:  10.1093/carcin/bgab097
    [24] Zeng H, Jorapur A, Shain AH, et al. Bi-allelic Loss of CDKN2A Initiates Melanoma Invasion via BRN2 Activation[J]. Cancer Cell, 2018, 34: 56-68. e9. doi:  10.1016/j.ccell.2018.05.014
    [25] Fane ME, Chhabra Y, Hollingsworth D, et al. NFIB Mediates BRN2 Driven Melanoma Cell Migration and Invasion Through Regulation of EZH2 and MITF[J]. EBioMedicine, 2017, 16: 63-75. doi:  10.1016/j.ebiom.2017.01.013
    [26] Chen HY, Lee YH, Chen HY, et al. Capsaicin Inhibited Aggressive Phenotypes through Downregulation of Tumor-Associated NADH Oxidase (tNOX) by POU Domain Transcription Factor POU3F2[J]. Molecules, 2016, 21: 733.
    [27] Li H, Gao C, Zhuang J, et al. An mRNA characterization model predicting survival in patients with invasive breast cancer based on The Cancer Genome Atlas database[J]. Cancer Biomark, 2021, 30: 417-428. doi:  10.3233/CBM-201684
    [28] Miskin RP, Warren J, Ndoye A, et al. Integrin α3β1 Promotes Invasive and Metastatic Properties of Breast Cancer Cells through Induction of the Brn-2 Transcription Factor[J]. Cancers (Basel), 2021, 13: 480. doi:  10.3390/cancers13030480
    [29] Hamm M, Sohier P, Petit V, et al. BRN2 is a non-canonical melanoma tumor-suppressor[J]. Nat Commun, 2021, 12: 3707. doi:  10.1038/s41467-021-23973-5
    [30] Herbert K, Binet R, Lambert JP, et al. BRN2 suppresses apoptosis, reprograms DNA damage repair, and is associ-ated with a high somatic mutation burden in melanoma[J]. Genes Dev, 2019, 33: 310-332. doi:  10.1101/gad.314633.118
    [31] Cui T, Bell EH, McElroy J, et al. A Novel miR-146a-POU3F2/SMARCA5 Pathway Regulates Stemness and Therapeutic Response in Glioblastoma[J]. Mol Cancer Res, 2021, 19: 48-60. doi:  10.1158/1541-7786.MCR-20-0353
    [32] Zhao G, Wei Z, Guo Y. MicroRNA-107 is a novel tumor suppressor targeting POU3F2 in melanoma[J]. Biol Res, 2020, 53: 11.
    [33] Goodall J, Wellbrock C, Dexter TJ, et al. The Brn-2 transcription factor links activated BRAF to melanoma proliferation[J]. Mol Cell Biol, 2004, 24: 2923-2931. doi:  10.1128/MCB.24.7.2923-2931.2004
    [34] Bonvin E, Falletta P, Shaw H, et al. A phosphatidylino-sitol 3-kinase-Pax3 axis regulates Brn-2 expression in melanoma[J]. Mol Cell Biol, 2012, 32: 4674-4683. doi:  10.1128/MCB.01067-12
    [35] Chen HY, Islam A, Yuan TM, et al. Regulation of tNOX expression through the ROS-p53-POU3F2 axis contributes to cellular responses against oxaliplatin in human colon cancer cells[J]. J Exp Clin Cancer Res, 2018, 37: 161. doi:  10.1186/s13046-018-0837-9
    [36] Ding S, Jin Y, Hao Q, et al. LncRNA BCYRN1/miR-490-3p/POU3F2, served as a ceRNA network, is connec-ted with worse survival rate of hepatocellular carcinoma patients and promotes tumor cell growth and metastasis[J]. Cancer Cell Int, 2020, 20: 6. doi:  10.1186/s12935-019-1081-x
    [37] Fan W, Chen L, Wu X, et al. Circ_ 0031242 Silencing Mitigates the Progression and Drug Resistance in DDP-Resistant Hepatoma Cells by the miR-924/POU3F2 Axis[J]. Cancer Manag Res, 2021, 13: 743-755. doi:  10.2147/CMAR.S272851
  • 加载中
图(1)
计量
  • 文章访问数:  16
  • HTML全文浏览量:  0
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-05
  • 录用日期:  2022-02-21
  • 网络出版日期:  2022-08-15
  • 刊出日期:  2022-09-30

目录

    /

    返回文章
    返回

    【通知】尊敬的读者、作者及编者:因特殊原因,本站自2022.9.30至10.24日期间实施6—24点开放,其他时段访问受限,给您带来不便敬请谅解!10.25日恢复如常。