A Bibliometric Analysis of the Global Research Output on Artificial Intelligence Clinical Research
-
摘要:
目的 探究人工智能(artificial intelligence, AI)在医学领域应用的随机对照试验(randomized controlled trial, RCT)研究现状,以期为我国学者开展AI研究提供思路。 方法 检索PubMed数据库,获得AI相关RCT医学研究文献。基于Web of Science数据库获取文献发表时间、被引频次、作者及所在研究机构与国家等信息,并进行归纳总结;采用VOSviewer 1.6.17软件生成作者、研究机构、国家合作的网络图,并对关键词进行聚类分析;采用Cite Space 5.8.R3软件对文献被引情况和关键词进行突发性检测。 结果 共获得医学领域内AI相关RCT文献1174篇,篇均被引频次为36.09,发表时间分布于1989至2021年,其中2007年后发文量显著增加。1174篇研究共涉及61个国家、1794个机构、7288位作者,其中发文量居前5位的国家依次为美国(37.22%,437篇)、意大利(10.90%,128篇)、韩国(8.86%,104篇)、德国(8.35%,98篇)、中国(7.84%,92篇),发文量居前5位的研究机构分别为美国哈佛大学(2.98%,35篇)、韩国延世大学(2.73%,32篇)、美国西北大学(2.21%,26篇)、美国麻省理工学院(2.13%,25篇)、美国斯坦福大学(1.96%,23篇),发文量居前5位的作者分别为Krebs(22篇,美国麻省理工学院)、Calabro(11篇,意大利IRCCS神经中心)、Picelli (11篇,意大利维罗纳大学)、Smania(11篇,意大利维罗纳大学)、Lin(10篇,中国台湾大学)。高产作者、研究机构、国家之间的合作不充分、不密切。高频关键词聚集为3类:机器人技术在疾病治疗中的应用、机器学习在疾病诊断与管理中的应用和AI在康复训练中的应用。突发性检测结果发现,机器人辅助和机器学习是目前该领域内的研究热点。 结论 近年来AI相关RCT医学研究数量增加迅速,虽然发达国家在该领域的研究处于领先地位,但我国的研究者和研究机构亦表现出巨大潜力。目前开展AI相关RCT医学研究的作者、研究机构及国家之间的合作不密切,研究主题有待拓展。 Abstract:Objective To explore the research status of randomized controlled trial (RCT) with the application of artificial intelligence (AI) in the medical field, in order to provide insights for Chinese scholars to carry out AI research. Methods AI related RCT researches were obtained by searching PubMed database. The Web of Science was used to obtain the publication year, citations, authors, institutions, and countries of included AI related RCT researches. The VOSviewer 1.6.17 software was used to extract the related information, generate visual cooperation network maps for the country, institutions and authors, and perform cluster analysis for keywords. The Cite Space 5.8.R3 software was used to analyze the burst citation references and keywords. Results A total of 1174 RCTs in AI field were included, with an average citation frequency of 36.09. The publication time was from 1989 to 2021, and the number of articles increased rapidly after 2007. Among them, the top 5 countries with the number of published articles were the United States (37.22%, 437 papers), Italy (10.90%, 128 papers), South Korea (8.86%, 104 papers), Germany (8.35%, 98 papers), China (7.84 %, 92 papers); the top 5 research institutions with the most published papers were Harvard University (2.98%, 35 papers), Yonsei University (2.73%, 32 papers), Northwestern University (2.21%, 26 papers), Massachusetts Institute of Technology (2.13%, 25 papers), Stanford University (1.96%, 23 papers), and the top 5 authors were Krebs (22 papers, Massachusetts Institute of Technology, US), Calabro (11 papers, IRCCS Neural Center, Italy), Picelli (11 papers, University of Verona, Italy), Smania (11 papers, University of Verona, Italy), Lin (10 papers, Taiwan University, China). Insufficient cooperation between prolific authors, research institutions, countries. The main hot topics were the application of robot technology in treatment, the application of machine learning in disease diagnosis and management, and the application of AI in rehabilitation training. Combined with strongest citation burst, it was found that robot assistance and machine learning may be the current research hot topics. Conclusions AI has great application prospects in the medical field, and the number of AI related RCT medical research has increased rapidly in recent years. Although the developed countries are in the leading position in this field, the researchers and research institutions in China have shown great potential. At present, the cooperation between the authors, research institutions and countries conducting AI related RCT medical research is not close, and the research topic needs to be expanded. 作者贡献:史纪元负责文献检索、数据分析、论文撰写;高亚负责论文构思、文献筛选、数据分析;许建国负责文献筛选、数据分析;田金徽负责文献检索、论文修订;李峥负责论文修订与审核。利益冲突:所有作者均声明不存在利益冲突 -
图 5 突发强度居前20位的AI相关RCT医学研究引文
AI、RCT:同图 1
图 6 突发强度居前30位的AI相关RCT医学研究关键词
AI、RCT:同图 1
表 1 被引频次居前10位的AI相关RCT医学研究
序号 文章题目 作者及发表时间 期刊名称 被引频次 1 Robot-assisted therapy for long-term upper-limb impairment after stroke Lo等(2010年) N Engl J Med 819 2 Robot-assisted movement training compared with conventional therapy techniques for the rehabilitation of upper-limb motor function after stroke Lum等(2002年) Arch Phys Med Rehabil 739 3 Effect of Robotic-Assisted vs Conventional Laparoscopic Surgery on Risk of Conversion to Open Laparotomy Among Patients Undergoing Resection for Rectal Cancer The ROLARR Randomized Clinical Trial David等(2017年) JAMA 475 4 A novel approach to stroke rehabilitation: robot-aided sensorimotor stimulation Volpe等(2000年) Neurology 414 5 Robot-based hand motor therapy after stroke Takahashi(2008年) Brain 408 6 Multicenter randomized clinical trial evaluating the effectiveness of the Lokomat in subacute stroke Hidler等(2009年) Neurorehabil Neural Repair 398 7 Prospective randomized controlled trial of robotic versus open radical cystectomy for bladder cancer: perioperative and pathologic results Nix等(2010年) Eur Urol 380 8 Comparing open radical cystectomy and robot-assisted laparoscopic radical cystectomy: a randomized clinical trial Bochner等(2015年) Eur Urol 359 9 Effects of robotic therapy on motor impairment and recovery in chronic stroke Fasoli等(2003年) Arch Phys Med Rehabil 349 10 Robot-assisted laparoscopic prostatectomy versus open radical retropubic prostatectomy: 24-month outcomes from a randomised controlled study Coughlin等(2018年) Lancet Oncol 348 注:检索时间为2021年12月1日;AI、RCT: 同图 1 -
[1] 刘伯炎, 王群, 徐俐颖, 等. 人工智能技术在医药研发中的应用[J]. 中国新药杂志, 2020, 29: 1979-1986. doi: 10.3969/j.issn.1003-3734.2020.17.011 Liu BY, Wang Q, Xu LY, et al. Application of artificial intelligence technology in pharmaceutical research and development[J]. Zhongguo Xinyao Zazhi, 2020, 29: 1979-1986. doi: 10.3969/j.issn.1003-3734.2020.17.011 [2] 朱森华, 章桦. 人工智能技术在医学影像产业的应用与思考[J]. 人工智能, 2020(3): 94-105. https://www.cnki.com.cn/Article/CJFDTOTAL-DKJS202003010.htm Zhu SH, Zhang H. Application and thinking of artificial intelligence technology in medical imaging industry[J]. Rengong Zhineng, 2020(3): 94-105. https://www.cnki.com.cn/Article/CJFDTOTAL-DKJS202003010.htm [3] McGenity C, Treanor D. Guidelines for clinical trials using artificial intelligence - SPIRIT-AI and CONSORT-AI[J]. J Pathol, 2021, 253: 14-16. doi: 10.1002/path.5565 [4] Liu X, Rivera SC, Moher D, et al. SPIRIT-AI and CONSORT-AI Working Group. Reporting guidelines for clinical trial reports for interventions involving artificial intelli-gence: the CONSORT-AI Extension[J]. BMJ, 2020, 370: m3164. [5] Cruz Rivera S, Liu X, Chan AW, et al. SPIRIT-AI and CONSORT-AI Working Group; SPIRIT-AI and CONSORT-AI Steering Group; SPIRIT-AI and CONSORT-AI Consensus Group. Guidelines for clinical trial protocols for interventions involving artificial intelligence: the SPIRIT-AI extension[J]. Nat Med, 2020, 26: 1351-1363. doi: 10.1038/s41591-020-1037-7 [6] 邓卓, 苏秉华, 张凯. 深度学习算法在乳腺肿瘤诊断中的应用研究[J]. 中国医疗设备, 2020, 35: 60-64. https://www.cnki.com.cn/Article/CJFDTOTAL-YLSX202009015.htm Deng Z, Su BH, Zhang K. Application of deep learning algorithm in breast cancer diagnosis[J]. Zhongguo Yiliao Shebei, 2020, 35: 60-64. https://www.cnki.com.cn/Article/CJFDTOTAL-YLSX202009015.htm [7] 吴东, 刘星宇, 张逸凌, 等. 人工智能辅助全髋关节置换术三维规划系统的研发及临床应用研究[J]. 中国修复重建外科杂志, 2020, 34: 1077-1084. https://www.cnki.com.cn/Article/CJFDTOTAL-ZXCW202009001.htm Wu D, Liu XY, Zhang YL, et al. Research and develop-ment of artificial intelligence assisted three-dimensional planning system for total hip arthroplasty and its clinical application[J]. Zhongguo Xiufu Chongjian Waike Zahzi, 2020, 34: 1077-1084. https://www.cnki.com.cn/Article/CJFDTOTAL-ZXCW202009001.htm [8] 赵显鹏. 机器学习在医疗健康数据分析中的应用[J]. 电子世界, 2020(18): 116-117. https://www.cnki.com.cn/Article/CJFDTOTAL-ELEW202018057.htm Zhao XP. Application of machine learning in medical and health data analysis[J]. Dianzi Shijie, 2020(18): 116-117. https://www.cnki.com.cn/Article/CJFDTOTAL-ELEW202018057.htm [9] Gao Y, Shi S, Ma W, et al. Bibliometric analysis of global research on PD-1 and PD-L1 in the field of cancer[J]. Int Immunopharmacol, 2019, 72: 374-384. doi: 10.1016/j.intimp.2019.03.045 [10] 高亚, 李沐阳, 孙月, 等. 证据图研究合作能力与研究主题分析[J]. 中国药物评价, 2019, 36: 165-168. doi: 10.3969/j.issn.2095-3593.2019.03.002 Gao Y, Li MY, Sun Y, et al. Evidence map research cooperation ability and research topic analysis[J]. Zhongguo Yaowu Pingjia, 2019, 36: 165-168. doi: 10.3969/j.issn.2095-3593.2019.03.002 [11] Gao Y, Ge L, Shi S, et al. Global trends and future prospects of e-waste research: a bibliometric analys[J]. Environ Sci Pollut Res Int, 2019, 26: 17809-17820. doi: 10.1007/s11356-019-05071-8 [12] Shi J, Gao Y, Ming L, et al. A bibliometric analysis of global research output on network meta-analysis[J]. BMC Med Inform Decis Mak, 2021, 21: 144. doi: 10.1186/s12911-021-01470-5 [13] 史纪元, 高亚, 田金徽, 等. COMET数据库核心指标集研究现状剖析[J]. 中国医药导刊, 2020, 22: 53-58. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYY202001020.htm Shi JY, Gao Y, Tian JH, et al. Analysis on the research status of core index set of comet database[J]. Zhongguo Yiyao Daokan, 2020, 22: 53-58. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYY202001020.htm [14] 高亚, 蔺小艳, 李戟玭, 等. 仿制药一致性评价的可视化分析[J]. 中国药物评价, 2017, 34: 241-245. https://www.cnki.com.cn/Article/CJFDTOTAL-YAPJ201704001.htm Gao Y, Lin XY, Li JY, et al. Visual analysis of conformity evaluation of generic drugs[J]. Zhongguo Yaowu Pingjia, 2017, 34: 241-245. https://www.cnki.com.cn/Article/CJFDTOTAL-YAPJ201704001.htm [15] Liang YD, Li Y, Zhao J, et al. Study of acupuncture for low back pain in recent 20 years: a bibliometric analysis via Cite Space[J]. J Pain Res, 2017, 10: 951-964. [16] Lo AC, Guarino PD, Richards LG, et al. Robot-assisted therapy for long-term upper-limb impairment after stroke[J]. N Engl J Med, 2010, 362: 1772-1783. [17] 陈俊任, 曾瑜, 张超, 等. 人工智能医学应用的文献传播的可视化研究[J]. 中国循证医学杂志, 2021, 21: 973-979. https://www.cnki.com.cn/Article/CJFDTOTAL-ZZXZ202108014.htm Chen JR, Zeng Y, Zhang C, et al. Visual research on literature dissemination of artificial intelligence medical application[J]. Zhongguo Xunzheng Yixue Zazhi, 2021, 21: 973-979. https://www.cnki.com.cn/Article/CJFDTOTAL-ZZXZ202108014.htm -