留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基因检测在冠心病精准医疗中的应用进展

陈文 周洲

陈文, 周洲. 基因检测在冠心病精准医疗中的应用进展[J]. 协和医学杂志, 2021, 12(4): 445-449. doi: 10.12290/xhyxzz.2021-0418
引用本文: 陈文, 周洲. 基因检测在冠心病精准医疗中的应用进展[J]. 协和医学杂志, 2021, 12(4): 445-449. doi: 10.12290/xhyxzz.2021-0418
CHEN Wen, ZHOU Zhou. Application of Genetic Testing in Precision Medicine for Coronary Heart Disease[J]. Medical Journal of Peking Union Medical College Hospital, 2021, 12(4): 445-449. doi: 10.12290/xhyxzz.2021-0418
Citation: CHEN Wen, ZHOU Zhou. Application of Genetic Testing in Precision Medicine for Coronary Heart Disease[J]. Medical Journal of Peking Union Medical College Hospital, 2021, 12(4): 445-449. doi: 10.12290/xhyxzz.2021-0418

基因检测在冠心病精准医疗中的应用进展

doi: 10.12290/xhyxzz.2021-0418
基金项目: 

国家自然科学基金 82070326

中国医学科学院医学与健康科技创新工程 2016-I2M-1-016

详细信息
    通讯作者:

    周洲  电话:010-88398055,E-mail:fwcomd@126.com

  • 中图分类号: R446.1

Application of Genetic Testing in Precision Medicine for Coronary Heart Disease

Funds: 

National Natural Science Foundation of China 82070326

CAMS Innovation Fund for Medical Sciences 2016-I2M-1-016

More Information
    Corresponding author: ZHOU Zhou  Tel: 86-10-88398055, E-mail: fwcomd@126.com
  • 摘要: 精准医疗是在诊疗过程中充分考虑患者个体在基因、环境、生活方式等方面差异的医学手段,基因检测是实现精准医疗的重要方式。自人类基因组数据成功解析以来,人们对遗传因素在心血管疾病发生、发展和转归中的作用有了更深刻的认识。迅速崛起的精准医疗围绕心血管疾病的预防和治疗,将基础医学、临床医学和转化医学有机结合,不仅推动了心血管疾病遗传学研究的快速进展,且为制定个体化疾病诊疗方案奠定了基础。遗传变异和基因多态性是冠心病的重要发病因素,基因检测不仅可识别冠心病高危人群,且能够针对不同分子病理途径制定最佳预防和治疗策略,进而促进精准医学的应用。本文将着重介绍基因检测在冠心病及其相关危险因素预防、诊断和治疗中的作用。
    作者贡献:陈文负责查阅文献、撰写论文;周洲负责修订、审核论文。
    利益冲突:
  • [1] 中国心血管健康与疾病报告编写组. 中国心血管健康与疾病报告2019概要[J]. 中国循环杂志, 2020, 35: 833-852. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGXH202009001.htm

    The Writing Committee of the Report on Cardiovascular Health Diseases in China. Summary of China Cardiovascular Health and Disease Report 2019[J]. Zhongguo Xunhuan Zazhi, 2020, 35: 833-852. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGXH202009001.htm
    [2] Truett J, Cornfield J, Kannel W. A multivariate analysis of the risk of coronary heart disease in Framingham[J]. J Chronic Dis, 1967, 20: 511-524. doi:  10.1016/0021-9681(67)90082-3
    [3] Andersson C, Johnson AD, Benjamin EJ, et al. 70-year legacy of the Framingham Heart Study[J]. Nat Rev Cardiol, 2019, 16: 687-698. doi:  10.1038/s41569-019-0202-5
    [4] Chambless LE, Folsom AR, Sharrett AR, et al. Coronary heart disease risk prediction in the Atherosclerosis Risk in Communities (ARIC) study[J]. J Clin Epidemiol, 2003, 56: 880-890. doi:  10.1016/S0895-4356(03)00055-6
    [5] Scheltens T, Verschuren WM, Boshuizen HC, et al. Estimation of cardiovascular risk: a comparison between the Framingham and the SCORE model in people under 60 years of age[J]. Eur J Cardiovasc Prev Rehabil, 2008, 15: 562-566. doi:  10.1097/HJR.0b013e3283063a65
    [6] 中国心血管病风险评估和管理指南编写联合委员会. 中国心血管病风险评估和管理指南[J]. 中华预防医学杂志, 2019, 34: 4-28. doi:  10.3760/cma.j.issn.0253-9624.2019.01.002

    Chinese Joint Committee on the Preparation of Guidelines for Risk Assessment and Management of Cardiovascular Disea-ses. The Joint Task Force for Guideline on the Assessment and Management of Cardiovascular Risk in China[J]. Zhonghua Yufang Yixue Zazhi, 2019, 34: 4-28. doi:  10.3760/cma.j.issn.0253-9624.2019.01.002
    [7] 刘晓聪, 冯颖青, 陈纪言. 心血管疾病风险评估模型研究进展[J]. 中国实用内科杂志, 2021, 41: 428-433.

    Liu XC, Feng YQ, Chen JY. Advances in cardiovascular disease risk assessment models[J]. Zhongguo Shiyong Neike Zazhi, 2021, 41: 428-433.
    [8] Nomura A, Sato T, Tada H, et al. Polygenic risk scores for low-density lipoprotein cholesterol and familial hypercholesterolemia[J]. J Human Genetics, 2021. doi: 10.1038/s10038-021-00929-7.[Epub ahead of print].
    [9] Elliott J, Bodinier B, Bond TA, et al. Predictive Accuracy of a Polygenic Risk Score-Enhanced Prediction Model vs a Clinical Risk Score for Coronary Artery Disease[J]. JAMA, 2020, 323: 636-645. doi:  10.1001/jama.2019.22241
    [10] Teslovich TM, Musunuru K, Smith AV, et al. Biological, clinical and population relevance of 95 loci for blood lipids[J]. Nature, 2010, 466: 707-713. doi:  10.1038/nature09270
    [11] Willer CJ, Schmidt EM, Sengupta S, et al. Discovery and refinement of loci associated with lipid levels[J]. Nat Genet, 2013, 45: 1274-1283. doi:  10.1038/ng.2797
    [12] Sun D, Zhou T, Heianza Y, et al. Type 2 Diabetes and Hypertension[J]. Circ Res, 2019, 124: 930-937. doi:  10.1161/CIRCRESAHA.118.314487
    [13] Saleheen D, Zhao W, Young R, et al. Loss of Cardioprotective Effects at the ADAMTS7 Locus as a Result of Gene-Smoking Interactions[J]. Circulation, 2017, 135: 2336-2353. doi:  10.1161/CIRCULATIONAHA.116.022069
    [14] Roberts R, Chang CC, Hadley T. Genetic Risk Stratification: A Paradigm Shift in Prevention of Coronary Artery Disease[J]. JACC Basic Transl Sci, 2021, 6: 287-304. doi:  10.1016/j.jacbts.2020.09.004
    [15] Koyama S, Ito K, Terao C, et al. Population-specific and trans-ancestry genome-wide analyses identify distinct and shared genetic risk loci for coronary artery disease[J]. Nat Genet, 2020, 52: 1169-1177. doi:  10.1038/s41588-020-0705-3
    [16] Mega JL, Stitziel NO, Smith JG, et al. Genetic risk, coronary heart disease events, and the clinical benefit of statin therapy: an analysis of primary and secondary prevention trials[J]. Lancet, 2015, 385: 2264-2271. doi:  10.1016/S0140-6736(14)61730-X
    [17] Khera AV, Emdin CA, Drake I, et al. Genetic Risk, Adherence to a Healthy Lifestyle, and Coronary Disease[J]. N Engl J Med, 2016, 375: 2349-2358. doi:  10.1056/NEJMoa1605086
    [18] Mega JL, Stitziel NO, Smith JG, et al. Genetic risk, coronary heart disease events, and the clinical benefit of statin therapy: an analysis of primary and secondary prevention trials[J]. Lancet, 2015, 385: 2264-2271. doi:  10.1016/S0140-6736(14)61730-X
    [19] Nelson CP, Goel A, Butterworth AS, et al. Association analyses based on false discovery rate implicate new loci for coronary artery disease[J]. Nat Genet, 2017, 49: 1385-1391. doi:  10.1038/ng.3913
    [20] Abraham G, Havulinna AS, Bhalala OG, et al. Genomic prediction of coronary heart disease[J]. Eur Heart J, 2016, 37: 3267-3278. doi:  10.1093/eurheartj/ehw450
    [21] Wang J, Dron JS, Ban MR, et al. Polygenic Versus Monogenic Causes of Hypercholesterolemia Ascertained Clinically[J]. Arterioscler Thromb Vasc Biol, 2016, 36: 2439-2445. doi:  10.1161/ATVBAHA.116.308027
    [22] Berberich AJ, Hegele RA. The complex molecular genetics of familial hypercholesterolaemia[J]. Nat Rev Cardiol, 2019, 16: 9-20. doi:  10.1038/s41569-018-0052-6
    [23] Hu P, Dharmayat KI, Stevens CAT, et al. Prevalence of Familial Hypercholesterolemia Among the General Population and Patients With Atherosclerotic Cardiovascular Disease: A Systematic Review and Meta-Analysis[J]. Circulation, 2020, 141: 1742-1759. doi:  10.1161/CIRCULATIONAHA.119.044795
    [24] Shi HW, Yang JG, Wang Y, et al. The Prevalence of Familial Hypercholesterolemia (FH) in Chinese Patients With Acute Myocardial Infarction (AMI): Data From Chinese Acute Myocardial Infarction (CAMI) Registry[J]. Front Cardiovasc Med, 2020, 7: 160. doi:  10.3389/fcvm.2020.00160
    [25] Trinder M, Li X, Decastro ML, et al. Risk of Premature Atherosclerotic Disease in Patients With Monogenic Versus Polygenic Familial Hypercholesterolemia[J]. J Am Coll Cardiol, 2019, 74: 512-522. doi:  10.1016/j.jacc.2019.05.043
    [26] Perez De Isla L, Alonso R, Watts GF, et al. Attainment of LDL-Cholesterol Treatment Goals in Patients With Familial Hypercholesterolemia: 5-Year SAFEHEART Registry Follow-Up [J]. J Am Coll Cardiol, 2016, 67: 1278-1285. http://www.researchgate.net/publication/298329532_Attainment_of_LDL-Cholesterol_Treatment_Goals_in_Patients_With_Familial_Hypercholesterolemia
    [27] Lloyd-Jones DM, Morris PB, Ballantyne CM, et al. 2016 ACC Expert Consensus Decision Pathway on the Role of Non-Statin Therapies for LDL-Cholesterol Lowering in the Management of Atherosclerotic Cardiovascular Disease Risk: A Report of the American College of Cardiology Task Force on Clinical Expert Conse[J]. J Am Coll Cardiol, 2016, 68: 92-125. doi:  10.1016/j.jacc.2016.03.519
    [28] Sturm AC, Knowles JW, Gidding SS, et al. Clinical Genetic Testing for Familial Hypercholesterolemia: JACC Scientific Expert Panel[J]. J Am Coll Cardiol, 2018, 72: 662-680. doi:  10.1016/j.jacc.2018.05.044
    [29] Sibbing D, Aradi D, Alexopoulos D, et al. Updated Expert Consensus Statement on Platelet Function and Genetic Testing for Guiding P2Y(12) Receptor Inhibitor Treatment in Percutaneous Coronary Intervention[J]. JACC Cardiovasc Interv, 2019, 12: 1521-1537. doi:  10.1016/j.jcin.2019.03.034
    [30] Simon T, Verstuyft C, Mary-Krause M, et al. Genetic determinants of response to clopidogrel and cardiovascular events[J]. N Engl J Med, 2009, 360: 363-375. doi:  10.1056/NEJMoa0808227
    [31] Giusti B, Gori AM, Marcucci R, et al. Relation of cytochrome P450 2C19 loss-of-function polymorphism to occurrence of drug-eluting coronary stent thrombosis[J]. J Am Coll Cardiol, 2009, 103: 806-811. http://www.sciencedirect.com/science/article/pii/S0002914908020973
    [32] Sibbing D, Stegherr J, Latz W, et al. Cytochrome P450 2C19 loss-of-function polymorphism and stent thrombosis following percutaneous coronary intervention[J]. Eur Heart J, 2009, 30: 916-922. http://d.wanfangdata.com.cn/periodical/ChlQZXJpb2RpY2FsRW5nTmV3UzIwMjEwMzAyEiA1MWIxOGRiNzhhYzgwODEwZmExYzMyMDkzMDZkYzhhNBoINXAzN294ZGY%3D
    [33] Claassens DMF, Vos GJA, Bergmeijer TO, et al. A Genotype-Guided Strategy for Oral P2Y12 Inhibitors in Primary PCI[J]. N Engl J Med, 2019, 381: 1621-1631. doi:  10.1056/NEJMoa1907096
    [34] Pereira NL, Farkouh ME, So D, et al. Effect of Genotype-Guided Oral P2Y12 Inhibitor Selection vs Conventional Clopidogrel Therapy on Ischemic Outcomes After Percutaneous Coronary Intervention: The TAILOR-PCI Randomized Clinical Trial[J]. JAMA, 2020, 324: 761-771. doi:  10.1001/jama.2020.12443
    [35] Ntaios G, Milionis H. Low-density lipoprotein cholesterol lowering for the prevention of cardiovascular outcomes in patients with ischemic stroke[J]. Int J Stroke, 2019, 14: 476-482. http://www.researchgate.net/publication/333135554_Low-density_lipoprotein_cholesterol_lowering_for_the_prevention_of_cardiovascular_outcomes_in_patients_with_ischemic_stroke
    [36] Hou Q, Li S, Li L, et al. Association Between SLCO1B1 Gene T521C Polymorphism and Statin-Related Myopathy Risk: A Meta-Analysis of Case-Control Studies[J]. Medicine (Baltimore), 2015, 94: e1268. http://europepmc.org/articles/PMC4635788/
    [37] Pandya A, Zhu J, Spahillari A. Cost-effectiveness of Statin Use Guidelines-Reply[J]. JAMA Cardiol, 2021, 6: 364. http://www.researchgate.net/publication/347678797_Cost-effectiveness_of_Statin_Use_Guidelines-Reply?_sg=yYyha2Mfsl-88re-ky_x0u7iiSxbucbGiY3KCA0DmmVjOsHZGvldgH_quApgduRkyXrAB2BzpADFSAk
  • 加载中
计量
  • 文章访问数:  82
  • HTML全文浏览量:  7
  • PDF下载量:  27
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-24
  • 录用日期:  2021-07-05
  • 刊出日期:  2021-07-30

目录

    /

    返回文章
    返回