留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

临床微生物快速检测新技术发展现状与前景

宁雅婷 杨启文 陈新飞 郁谨菡 李雪 徐英春

宁雅婷, 杨启文, 陈新飞, 郁谨菡, 李雪, 徐英春. 临床微生物快速检测新技术发展现状与前景[J]. 协和医学杂志, 2021, 12(4): 427-432. doi: 10.12290/xhyxzz.2021-0387
引用本文: 宁雅婷, 杨启文, 陈新飞, 郁谨菡, 李雪, 徐英春. 临床微生物快速检测新技术发展现状与前景[J]. 协和医学杂志, 2021, 12(4): 427-432. doi: 10.12290/xhyxzz.2021-0387
NING Yating, YANG Qiwen, CHEN Xinfei, YU Jinhan, LI Xue, XU Yingchun. Current Situation and Prospect of New Techniques for Rapid Clinical Microbiological Testing[J]. Medical Journal of Peking Union Medical College Hospital, 2021, 12(4): 427-432. doi: 10.12290/xhyxzz.2021-0387
Citation: NING Yating, YANG Qiwen, CHEN Xinfei, YU Jinhan, LI Xue, XU Yingchun. Current Situation and Prospect of New Techniques for Rapid Clinical Microbiological Testing[J]. Medical Journal of Peking Union Medical College Hospital, 2021, 12(4): 427-432. doi: 10.12290/xhyxzz.2021-0387

临床微生物快速检测新技术发展现状与前景

doi: 10.12290/xhyxzz.2021-0387
基金项目: 

北京市临床重点专科医学检验科卓越项目 ZK201000

北京协和医学院学科建设项目 201920200101

详细信息
    通讯作者:

    徐英春  电话:010-69159766,E-mail:xycpumch@139.com

  • 中图分类号: R446.5;R1

Current Situation and Prospect of New Techniques for Rapid Clinical Microbiological Testing

Funds: 

Beijing Key Clinical Specialty for Laboratory Medicine-Excellent Project ZK201000

Discipline Construction Project of Peking Union Medicial College 201920200101

More Information
    Corresponding author: XU Yingchun  Tel: 86-10-69159766, E-mail: xycpumch@139.com
  • 摘要: 感染性疾病起病急、进展快,早期精准识别和监测病原体耐药性对患者预后及遏制耐药至关重要。临床微生物常规技术已无法满足快速诊疗的需求,因此快速检测技术成为检验与临床关注的焦点。本文论述快速鉴定与药物敏感性检测的最新技术研究现状、问题及未来发展要点,旨在为临床微生物实验室未来新技术的引入提供参考。
    作者贡献:宁雅婷负责撰写、修订文章;杨启文、陈新飞、郁谨菡、李雪负责收集并整理文献;徐英春负责审校文章。
    利益冲突:
  • 表  1  不同光谱技术原理及其在临床微生物检测领域的应用

    名称 原理 用途 现状或应用前景 主要优缺点
    拉曼光谱 (1)对散射光谱进行分析,得到生物大分子结构特征振动信息图谱;记录大分子结构组成变化,结合多元统计分析区分不同种属的细菌 分类鉴定 鉴定系统仍然处于开发阶段,亟需搭建光谱数据库
    可在十几秒内完成对葡萄球菌、单核细胞增生性李斯特菌快速区分检测[11];40 min内完成血清样本中念珠菌种水平上的鉴定[12];结合化学计量学方法实现链球菌快速区分[13]
    优点:不受水分子干扰,非常适合生物医学体系;不依赖增殖培养,实现准确、高通量、对微生物无损伤、超快检[14];实时动态监测生物大分子含量,获得丰富的生物信息
    缺点:易受荧光信号干扰,重现性不佳,信号弱,设备价格高昂
    (2)结合重水同位素标记检测细胞代谢活性[15];检测细胞运动,以判断细菌活力 耐药性检测 用于发现潜在耐药性;监测医院内病原菌的流行病学;区分抗菌药物处理和未经处理的细菌,并在3.5 h内精确识别肠球菌中耐万古霉素菌株[16]
    (3)结合其他单细胞分离技术分离菌株,如光镊技术 菌株分离 对于混合菌群、苛养菌、异质性细菌研究具有深远意义
    微流控芯片结合光镊技术可分离出单细胞大肠埃希菌[16]
    近红外光谱 借助红外光和生物大分子化学键作用所产生的合频及振动倍频,获得微生物含氢基团的特征信息 快速鉴定 尚未用于临床,近红外光穿透性高,在深层组织分析应用方面极具前景[17] 优点:抗荧光干扰力强,可定性和定量分析
    缺点:灵敏度稍低,建模难度大,易受水分子干扰
    高光谱图像 遥感技术,精确识别化学组分的微小变化(光谱信息),反映微生物外部多层次的变化(图像信息)[18] 快速鉴定 一种新型的、非接触式的光学诊断技术,为临床提供有效的辅助诊断手段,具有巨大的发展潜力 优点:可将影像与光谱信息密切结合,解决光谱无法成像的瓶颈
    缺点:空间分辨率、信噪比稍差
    激光诱导击穿光谱 利用激光照射微生物表面产生等离子体,探测等离子体中的原子和离子谱线 快速鉴定 处于研究起步阶段
    真菌方面研究及深度远不及细菌
    采用纳米颗粒与横向流带结合构成新的传感平台激光诱导击穿光谱横向流带,在10 min内可对金黄色葡萄球菌进行检测,检出下限达1.6 CFU/mL[19]
    优点:实时在线、非接触、多种元素同时探测
    缺点:在检测灵敏度、消除基质效应及便携等方面存在挑战
    下载: 导出CSV
  • [1] Vazquez-Guillamet C, Scolari M, Zilberberg MD, et al. Using the number needed to treat to assess appropriate antimicrobial therapy as a determinant of outcome in severe sepsis and septic shock[J]. Crit Care Med, 2014, 42: 2342-2349. doi:  10.1097/CCM.0000000000000516
    [2] 武洁, 王荃. 病原微生物检测在感染判定的意义[J]. 中国小儿急救医学, 2020, 27: 175-176. doi:  10.3760/cma.j.issn.1673-4912.2020.03.004

    Wu J, Wang Q. The significance of pathogenic microor-ganism tests in infection determination[J]. Zhongguo Xiaoer Jijiu Yixue, 2020, 27: 175-176. doi:  10.3760/cma.j.issn.1673-4912.2020.03.004
    [3] Martiny D, Busson L, Wybo I, et al. Comparison of the Microflex LT and Vitek MS systems for routine identification of bacteria by matrix-assisted laser desorption ionization-time of flight mass spectrometry[J]. J Clin Microbiol, 2012, 50: 1313-1325. doi:  10.1128/JCM.05971-11
    [4] Handal N, Bakken Jørgensen S, Smith Tunsjø H, et al. Anaerobic blood culture isolates in a Norwegian university hospital: identification by MALDI-TOF MS vs 16S rRNA sequencing and antimicrobial susceptibility profiles[J]. APMIS, 2015, 123: 749-758. doi:  10.1111/apm.12410
    [5] Li Y, Wang H, Hou X, et al. Identification by Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry and Antifungal Susceptibility Testing of Non-Aspergillus Molds[J]. Front Microbiol, 2020, 11: 922. doi:  10.3389/fmicb.2020.00922
    [6] Vidal-Acuña MR, Ruiz-Pérez de Pipaón M, Torres-Sánchez MJ, et al. Identification of clinical isolates of Aspergillus, including cryptic species, by matrix assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS)[J]. Med Mycol, 2018, 56: 838-846. doi:  10.1093/mmy/myx115
    [7] Seng P, Drancourt M, Gouriet F, et al. Ongoing revolution in bacteriology: routine identification of bacteria by matrix-assisted laser desorption ionization time-of-flight mass spectrometry[J]. Clin Infect Dis, 2009, 49: 543-551. doi:  10.1086/600885
    [8] Zhang L, Xiao M, Wang H, et al. Yeast identification algorithm based on use of the Vitek MS system selectively supplemented with ribosomal DNA sequencing: proposal of a reference assay for invasive fungal surveillance programs in China[J]. J Clin Microbiol, 2014, 52: 572-577. doi:  10.1128/JCM.02543-13
    [9] 马坚, 俞万钧, 胡必杰, 等. 通过基质辅助激光解析电离飞行时间质谱系统直接快速鉴定阳性血培养[J]. 中华医院感染学杂志, 2017, 27: 2676-2679.

    Ma J, Yu WJ, Hu BJ, et al. Rapid method for direct identification of bacteria in blood culture broth using matrix-assisted laser desorption/ionization time-of-flight mass spectro-metry[J]. Zhonghua Yiyuan Ganranxue Zazhi, 2017, 27: 2676-2679.
    [10] 刘振波, 夏苏苏, 康琳, 等. 基质辅助激光解吸电离飞行时间质谱在病原微生物鉴定中的应用[J]. 中国国境卫生检疫杂志, 2019, 42: 225-228.

    Liu ZB, Xia SS, Kang L, et al. The application of matrix-assisted laser desorption/ionization time-of flight mass spectrometry in pathogenic microorganisms identification[J]. Zhongguo Guojing Weisheng Jianyi Zazhi, 2019, 42: 225-228.
    [11] Wang XY, Yang JY, Wang YT, et al. M13 phage-based nanoprobe for SERS detection and inactivation of Staphylococcus aureus[J]. Talanta, 2021, 221: 121668. doi:  10.1016/j.talanta.2020.121668
    [12] Hu S, Kang H, Gu F, et al. Rapid Detection Method for Pathogenic Candida Captured by Magnetic Nanoparticles and Identified Using SERS via AgNPs[J]. Int J Nanomedicine, 2021, 16: 16941-16950. http://www.ncbi.nlm.nih.gov/pubmed/33603361
    [13] Sundaram J, Park B, Kwon Y, et al. Surface enhanced Raman scattering (SERS) with biopolymer encapsulated silver nanosubstrates for rapid detection of foodborne pathogens[J]. Int J Food Microbiol, 2013, 167: 67-73. doi:  10.1016/j.ijfoodmicro.2013.05.013
    [14] Wang K, Li S, Petersen M, et al. Detection and Characterization of Antibiotic-Resistant Bacteria Using Surface-Enhanced Raman Spectroscopy[J]. Nanomaterials (Basel), 2018, 8: 762 doi:  10.3390/nano8100762
    [15] 崔丽, 杨凯, 朱永官. 一种基于拉曼光谱-重水同位素标记的耐药菌药敏性快速检测方法和判断合理用药的方法: CN108267436B[P]. 2018-07-10.
    [16] Pilat Z, Bernatova S, Jezek J, et al. Microfluidic Cultivation and Laser Tweezers Raman Spectroscopy of E. coli under Antibiotic Stress[J]. Sensors (Basel), 2018, 18: 1623. doi:  10.3390/s18051623
    [17] Bec KB, Grabska J, Huck CW. Near-Infrared Spectroscopy in Bio-Applications[J]. Molecules, 2020, 25: 2948. doi:  10.3390/molecules25122948
    [18] Ferone M, Gowen A, Fanning S, et al. Microbial detection and identification methods: Bench top assays to omics approaches[J]. Compr Rev Food Sci Food Saf, 2020, 19: 3106-3129. doi:  10.1111/1541-4337.12618
    [19] Wu J, Liu Y, Cui Y, et al. A laser-induced breakdown spectroscopy-integrated lateral flow strip (LIBS-LFS) sensor for rapid detection of pathogen[J]. Biosens Bioelectron, 2019, 142: 111508. doi:  10.1016/j.bios.2019.111508
    [20] Liao JC, Mastali M, Gau V, et al. Use of electrochemical DNA biosensors for rapid molecular identification of uropathogens in clinical urine specimens[J]. J Clin Microbiol, 2006, 44: 561-570. doi:  10.1128/JCM.44.2.561-570.2006
    [21] Mach KE, Mohan R, Baron EJ, et al. A biosensor platform for rapid antimicrobial susceptibility testing directly from clinical samples[J]. J Urol, 2011, 185: 148-153. doi:  10.1016/j.juro.2010.09.022
    [22] Mach KE, Du CB, Phull H, et al. Multiplex pathogen identification for polymicrobial urinary tract infections using biosensor technology: a prospective clinical study[J]. J Urol, 2009, 182: 2735-2741. doi:  10.1016/j.juro.2009.08.028
    [23] Beck ET, Buchan BW, Reymann GC, et al. Comparison of ESwab and Wound Fiber Swab Specimen Collection Devices for Use with Xpert SA Nasal Complete Assay[J]. J Clin Microbiol, 2016, 54: 1904-1906. doi:  10.1128/JCM.00449-16
    [24] Gill CM, Asempa TE, Tickler IA, et al. Evaluation of the Xpert Carba-R NxG Assay for Detection of Carbapenemase Genes in a Global Challenge Set of Pseudomonas aeruginosa Isolates[J]. J Clin Microbiol, 2020, 58: e01098-20. http://www.researchgate.net/publication/347279448_Evaluation_of_the_Xpert_Carba-R_NxG_Assay_for_Detection_of_Carbapenemase_Genes_in_a_Global_Challenge_Set_of_Pseudomonas_aeruginosa_Isolates
    [25] Popowitch EB, Miller MB. Comparison of the Xpert Flu/RSV XC and Xpress Flu/RSV Assays[J]. J Clin Microbiol, 2018, 56: e00278-18. http://europepmc.org/abstract/MED/29769281
    [26] Detjen AK, DiNardo AR, Leyden J, et al. Xpert MTB/RIF assay for the diagnosis of pulmonary tuberculosis in children: a systematic review and meta-analysis[J]. Lancet Respir Med, 2015, 3: 451-461. doi:  10.1016/S2213-2600(15)00095-8
    [27] Dinnes J, Deeks JJ, Adriano A, et al. Rapid, point-of-care antigen and molecular-based tests for diagnosis of SARS-CoV-2 infection[J]. Cochrane Database Syst Rev, 2020(8): CD013705.
    [28] Poritz MA, Blaschke AJ, Byington CL, et al. FilmArray, an automated nested multiplex PCR system for multi-pathogen detection: development and application to respiratory tract infection[J]. PLoS One, 2011, 6: e26047. doi:  10.1371/journal.pone.0026047
    [29] Miller RR, Montoya V, Gardy JL, et al. Metagenomics for pathogen detection in public health[J]. Genome Med, 2013, 5: 81. doi:  10.1186/gm485
    [30] Goldberg B, Sichtig H, Geyer C, et al. Making the Leap from Research Laboratory to Clinic: Challenges and Opportunities for Next-Generation Sequencing in Infectious Disease Diagnostics[J]. mBio, 2015, 6: e1815-e1888.
    [31] Ren LL, Wang YM, Wu ZQ, et al. Identification of a novel coronavirus causing severe pneumonia in human: a descrip-tive study[J]. Chin Med J (Engl), 2020, 133: 1015-1024. doi:  10.1097/CM9.0000000000000722
    [32] 《中华传染病杂志》编辑委员会. 中国宏基因组学第二代测序技术检测感染病原体的临床应用专家共识[J]. 中华传染病杂志, 2020, 38: 681-689. doi:  10.3760/cma.j.cn311365-20200731-00732
    [33] Chiu CY, Miller SA. Clinical metagenomics[J]. Nat Rev Genet, 2019, 20: 341-355. doi:  10.1038/s41576-019-0113-7
    [34] 杨紫瑜, 李敏. 抗菌药物敏感性试验快速检测新技术[J]. 中华检验医学杂志, 2021, 44: 89-93. doi:  10.3760/cma.j.cn114452-20200818-00671
    [35] Cangelosi GA, Meschke JS. Dead or alive: molecular assessment of microbial viability[J]. Appl Environ Microbiol, 2014, 80: 5884-5891. doi:  10.1128/AEM.01763-14
    [36] Flentie K, Spears BR, Chen F, et al. Microplate-based surface area assay for rapid phenotypic antibiotic susceptibility testing[J]. Sci Rep, 2019, 9: 237. doi:  10.1038/s41598-018-35916-0
    [37] Nordmann P, Jayol A, Poirel L. Rapid Detection of Polymyxin Resistance in Enterobacteriaceae[J]. Emerg Infect Dis, 2016, 22: 1038-1043. doi:  10.3201/eid2206.151840
  • 加载中
表(1)
计量
  • 文章访问数:  352
  • HTML全文浏览量:  74
  • PDF下载量:  143
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-12
  • 录用日期:  2021-06-03
  • 网络出版日期:  2021-06-28
  • 刊出日期:  2021-07-30

目录

    /

    返回文章
    返回