留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

肿瘤相关自身抗体:临床应用现状与前景

詹皓婷 李永哲

詹皓婷, 李永哲. 肿瘤相关自身抗体:临床应用现状与前景[J]. 协和医学杂志, 2021, 12(4): 438-444. doi: 10.12290/xhyxzz.2021-0286
引用本文: 詹皓婷, 李永哲. 肿瘤相关自身抗体:临床应用现状与前景[J]. 协和医学杂志, 2021, 12(4): 438-444. doi: 10.12290/xhyxzz.2021-0286
ZHAN Haoting, LI Yongzhe. Tumor-associated Autoantibodies: Status and Prospect of Clinical Application[J]. Medical Journal of Peking Union Medical College Hospital, 2021, 12(4): 438-444. doi: 10.12290/xhyxzz.2021-0286
Citation: ZHAN Haoting, LI Yongzhe. Tumor-associated Autoantibodies: Status and Prospect of Clinical Application[J]. Medical Journal of Peking Union Medical College Hospital, 2021, 12(4): 438-444. doi: 10.12290/xhyxzz.2021-0286

肿瘤相关自身抗体:临床应用现状与前景

doi: 10.12290/xhyxzz.2021-0286
基金项目: 

国家自然科学基金 81871302

北京市临床重点专科医学检验科卓越项目 ZK201000

详细信息
    通讯作者:

    李永哲  电话:010-69159713,E-mail:yongzhelipumch@126.com

  • 中图分类号: R446.6

Tumor-associated Autoantibodies: Status and Prospect of Clinical Application

Funds: 

National Natural Science Foundation of China 81871302

Beijing Key Clinical Specialty for Laboratory Medicine-Excellent Project ZK201000

More Information
  • 摘要: 肿瘤相关自身抗体是由肿瘤相关抗原的异常暴露或呈递促进自身免疫反应而产生。该抗体水平可提前数月或数年于肿瘤患者体内升高,参与肿瘤恶性转化的发生与发展。近年来,肿瘤相关自身抗体的研究和应用为肿瘤的早期预警、危险评估、诊断、预后及治疗效果判断提供了重要参考依据。本文探讨肿瘤相关自身抗体产生机制、结缔组织病合并肿瘤和恶性肿瘤相关自身抗体的临床应用现状与研究进展,并对未来前景作出展望。
    作者贡献:詹皓婷负责检索文献,撰写、修订论文; 李永哲提出选题思路,并负责修订、审校论文。
    利益冲突:
  • [1] Fitzmaurice C, Abate D, Abbasi N, et al. Global, Regional, and National Cancer Incidence, Mortality, Years of Life Lost, Years Lived With Disability, and Disability-Adjusted Life-Years for 29 Cancer Groups, 1990 to 2017: A Systematic Analysis for the Global Burden of Disease Study[J]. JAMA Oncol, 2019, 5: 1749-1768.
    [2] Doyle HA, Gee RJ, Mamula MJ. A failure to repair self-proteins leads to T cell hyperproliferation and autoantibody production[J]. J Immunol, 2003, 171: 2840-2847. doi:  10.4049/jimmunol.171.6.2840
    [3] Baldwin RW. Tumour-specific immunity against spontaneous rat tumours[J]. Int J Cancer, 1966, 1: 257-264. doi:  10.1002/ijc.2910010305
    [4] Taylor G, Odili JL. Tumour specific T-like antigen of human breast carcinoma[J]. Br J Cancer, 1970, 24: 447-453. doi:  10.1038/bjc.1970.53
    [5] Lubin R, Zalcman G, Bouchet L, et al. Serum p53 antibodies as early markers of lung cancer[J]. Nat Med, 1995, 1: 701-702. doi:  10.1038/nm0795-701
    [6] Zaenker P, Gray ES, Ziman MR. Autoantibody Production in Cancer--The Humoral Immune Response toward Autolog-ous Antigens in Cancer Patients[J]. Autoimmun Rev, 2016, 15: 477-483. doi:  10.1016/j.autrev.2016.01.017
    [7] Yoshitomi H, Ueno H. Shared and distinct roles of T peripheral helper and T follicular helper cells in human diseases[J]. Cell Mol Immunol, 2021, 18: 523-527. doi:  10.1038/s41423-020-00529-z
    [8] Horii M, Matsushita T. Regulatory B cells and T cell Regulation in Cancer[J]. J Mol Biol, 2021, 433: 166685. doi:  10.1016/j.jmb.2020.10.019
    [9] Morrisroe K, Hansen D, Huq M, et al. Incidence, Risk Factors, and Outcomes of Cancer in Systemic Sclerosis[J]. Arthritis Care Res (Hoboken), 2020, 72: 1625-1635. doi:  10.1002/acr.24076
    [10] Hill CL, Zhang Y, Sigurgeirsson B, et al. Frequency of specific cancer types in dermatomyositis and polymyositis: a population-based study[J]. Lancet, 2001, 357: 96-100. doi:  10.1016/S0140-6736(00)03540-6
    [11] Saigusa R, Asano Y, Nakamura K, et al. Association of anti-RNA polymerase Ⅲ antibody and malignancy in Japanese patients with systemic sclerosis[J]. J Dermatol, 2015, 42: 524-527. doi:  10.1111/1346-8138.12827
    [12] Wielosz E, Dryglewska M, Majdan M. Clinical conse-quences of the presence of anti-RNA Pol Ⅲ antibodies in systemic sclerosis[J]. Postepy Dermatol Alergol, 2020, 37: 909-914. doi:  10.5114/ada.2020.102107
    [13] Igusa T, Hummers LK, Visvanathan K, et al. Autoanti-bodies and scleroderma phenotype define subgroups at high-risk and low-risk for cancer[J]. Ann Rheum Dis, 2018, 77: 1179-1186. http://ard.bmj.com/content/77/8/1179.full
    [14] Shah AA, Rosen A, Hummers L, et al. Close temporal relationship between onset of cancer and scleroderma in patients with RNA polymerase Ⅰ/Ⅲ antibodies[J]. Arthritis Rheum, 2010, 62: 2787-2795. doi:  10.1002/art.27549
    [15] Watad A, McGonagle D, Bragazzi NL, et al. Autoantibody status in systemic sclerosis patients defines both cancer risk and survival with ANA negativity in cases with concomitant cancer having a worse survival[J]. Oncoimmunology, 2019, 8: e1588084. doi:  10.1080/2162402X.2019.1588084
    [16] Xu GJ, Shah AA, Li MZ, et al. Systematic autoantigen analysis identifies a distinct subtype of scleroderma with coincident cancer[J]. Proc Natl Acad Sci U S A, 2016, 113: E7526-E7534. doi:  10.1073/pnas.1615990113
    [17] Shah AA, Xu G, Rosen A, et al. Brief Report: Anti-RNPC-3 Antibodies As a Marker of Cancer-Associated Scleroderma[J]. Arthritis Rheumatol, 2017, 69: 1306-1312. doi:  10.1002/art.40065
    [18] Aussy A, Boyer O, Cordel N. Dermatomyositis and Immune-Mediated Necrotizing Myopathies: A Window on Autoim-munity and Cancer[J]. Front Immunol, 2017, 8: 992. doi:  10.3389/fimmu.2017.00992
    [19] Oldroyd A, Sergeant JC, New P, et al. The temporal relationship between cancer and adult onset anti-transcriptional intermediary factor 1 antibody-positive dermatomyositis[J]. Rheumatology (Oxford), 2019, 58: 650-655. doi:  10.1093/rheumatology/key357
    [20] Best M, Molinari N, Chasset F, et al. Use of Anti-transcriptional Intermediary Factor-1 Gamma Autoantibody in Identifying Adult Dermatomyositis Patients with Cancer: A Systematic Review and Meta-analysis[J]. Acta Derm Venereol, 2019, 99: 256-262. doi:  10.2340/00015555-3091
    [21] Aussy A, Fréret M, Gallay L, et al. The IgG2 Isotype of Anti-Transcription Intermediary Factor 1γ Autoantibodies Is a Biomarker of Cancer and Mortality in Adult Dermatomyo-sitis[J]. Arthritis Rheumatol, 2019, 71: 1360-1370. http://www.ncbi.nlm.nih.gov/pubmed/30896088
    [22] Ikeda N, Yamaguchi Y, Kanaoka M, et al. Clinical significance of serum levels of anti-transcriptional intermediary factor 1-γ antibody in patients with dermatomyositis[J]. J Dermatol, 2020, 47: 490-496. doi:  10.1111/1346-8138.15284
    [23] Satoh M, Tanaka S, Ceribelli A, et al. A Comprehensive Overview on Myositis-Specific Antibodies: New and Old Biomarkers in Idiopathic Inflammatory Myopathy[J]. Clin Rev Allergy Immunol, 2017, 52: 1-19. doi:  10.1007/s12016-015-8510-y
    [24] Ge Y, Lu X, Shu X, et al. Clinical characteristics of anti-SAE antibodies in Chinese patients with dermatomyositis in comparison with different patient cohorts[J]. Sci Rep, 2017, 7: 188. doi:  10.1038/s41598-017-00240-6
    [25] Yang H, Peng Q, Yin L, et al. Identification of multiple cancer-associated myositis-specific autoantibodies in idiopa-thic inflammatory myopathies: a large longitudinal cohort study[J]. Arthritis Res Ther, 2017, 19: 259. doi:  10.1186/s13075-017-1469-8
    [26] Kadoya M, Hida A, Hashimoto Maeda M, et al. Cancer association as a risk factor for anti-HMGCR antibody-positive myopathy[J]. Neurol Neuroimmunol Neuroinflamm, 2016, 3: e290. doi:  10.1212/NXI.0000000000000290
    [27] Yajima S, Suzuki T, Oshima Y, et al. New Assay System Elecsys Anti-p53 to Detect Serum Anti-p53 Antibodies in Esophageal Cancer Patients and Colorectal Cancer Patients: Multi-institutional Study[J]. Ann Surg Oncol, 2020. doi:  10.1245/s10434-020-09342-4.
    [28] Takashi S, Satoshi Y, Akihiko O, et al. Clinical impact of preoperative serum p53 antibody titers in 1487 patients with surgically treated esophageal squamous cell carcinoma: a multi-institutional study[J]. Esophagus, 2021, 18: 65-71. doi:  10.1007/s10388-020-00761-6
    [29] Yang WL, Gentry-Maharaj A, Simmons A, et al. Elevation of TP53 Autoantibody Before CA125 in Preclinical Invasive Epithelial Ovarian Cancer[J]. Clin Cancer Res, 2017, 23: 5912-5922. doi:  10.1158/1078-0432.CCR-17-0284
    [30] Tokunaga E, Takizawa K, Masuda T, et al. Tumor-infiltrating lymphocytes and serum anti-p53 autoantibody in HER2-positive breast cancer treated with neoadjuvant chemotherapy[J]. J Clin Oncol, 2018, 36: e12648. doi:  10.1200/JCO.2018.36.15_suppl.e12648
    [31] Dai L, Li J, Tsay JJ, et al. Identification of autoantibodies to ECH1 and HNRNPA2B1 as potential biomarkers in the early detection of lung cancer[J]. Oncoimmunology, 2017, 6: e1310359. doi:  10.1080/2162402X.2017.1310359
    [32] Yan Y, Sun N, Wang H, et al. Whole Genome-Derived Tiled Peptide Arrays Detect Prediagnostic Autoantibody Signatures in Non-Small-Cell Lung Cancer[J]. Cancer Res, 2019, 79: 1549-1557. doi:  10.1158/0008-5472.CAN-18-1536
    [33] Tan Q, Wang D, Yang J, et al. Autoantibody profiling identifies predictive biomarkers of response to anti-PD1 therapy in cancer patients[J]. Theranostics, 2020, 10: 6399-6410. http://www.researchgate.net/publication/341608156_Autoantibody_profiling_identifies_predictive_biomarkers_of_response_to_anti-PD1_therapy_in_cancer_patients
    [34] Liu Y, Liao Y, Xiang L, et al. A panel of autoantibodies as potential early diagnostic serum biomarkers in patients with breast cancer[J]. Int J Clin Oncol, 2017, 22: 291-296. http://europepmc.org/abstract/MED/27778118
    [35] Lourenco AP, Benson KL, Henderson MC, et al. A Noninvasive Blood-based Combinatorial Proteomic Biomarker Assay to Detect Breast Cancer in Women Under the Age of 50 Years[J]. Clin Breast Cancer, 2017, 17: 516-525. e6. doi:  10.1016/j.clbc.2017.05.004
    [36] Evans RL, Pottala JV, Nagata S, et al. Longitudinal autoantibody responses against tumor-associated antigens decrease in breast cancer patients according to treatment modality[J]. BMC Cancer, 2018, 18: 119.
    [37] Church TR, Wandell M, Lofton-Day C, et al. Prospective evaluation of methylated SEPT9 in plasma for detection of asymptomatic colorectal cancer[J]. Gut, 2014, 63: 317-325. http://www.ncbi.nlm.nih.gov/pubmed/23408352/
    [38] Teras LR, Gapstur SM, Maliniak ML, et al. Prediagnostic Antibodies to Serum p53 and Subsequent Colorectal Cancer[J]. Cancer Epidemiol Biomarkers Prev, 2018, 27: 219-223. http://smartsearch.nstl.gov.cn/paper_detail.html?id=69c1346c762b171cb99c35c5430404da
    [39] Chen H, Qian J, Werner S, et al. Development and validation of a panel of five proteins as blood biomarkers for early detection of colorectal cancer[J]. Clin Epidemiol, 2017, 9: 517-526. http://www.ingentaconnect.com/content/doaj/11791349/2017/00000055/00000001/art00089
    [40] Fitzgerald S, O'Reilly JA, Wilson E, et al. Measurement of the IgM and IgG Autoantibody Immune Responses in Human Serum has High Predictive Value for the Presence of Colorectal Cancer[J]. Clin Colorectal Cancer, 2019, 18: e53-e60. http://d.wanfangdata.com.cn/periodical/ChlQZXJpb2RpY2FsRW5nTmV3UzIwMjEwMzAyEiAzNGI5Y2UzNjhiYTViYWRjY2EzYTA3ZGYxNjJkMjIxYhoIcHZrMmFpdWs%3D
    [41] Nozawa H, Ishihara S, Kawai K, et al. Paradoxical Reductions in Serum Anti-p53 Autoantibody Levels by Chemo-therapy in Unresectable Colorectal Cancer: An Observational Study[J]. Oncology, 2016, 91: 127-134. doi:  10.1159/000447241
    [42] Hwang HM, Heo CK, Lee HJ, et al. Identification of anti-SF3B1 autoantibody as a diagnostic marker in patients with hepatocellular carcinoma[J]. J Transl Med, 2018, 16: 177. doi:  10.1186/s12967-018-1546-z
    [43] Zhang S, Liu Y, Chen J, et al. Autoantibody signature in hepatocellular carcinoma using seromics[J]. J Hematol Oncol, 2020, 13: 85. doi:  10.1186/s13045-020-00918-x
    [44] Pan J, Zheng QZ, Li Y, et al. Discovery and Validation of a Serologic Autoantibody Panel for Early Diagnosis of Esophageal Squamous Cell Carcinoma[J]. Cancer Epidemiol Biomarkers Prev, 2019, 28: 1454-1460. http://www.ncbi.nlm.nih.gov/pubmed/31239266
    [45] Zhang JB, Cao M, Chen J, et al. Serum anti-TOPO48 autoantibody as a biomarker for early diagnosis and prognosis in patients with esophageal squamous cell carcinoma[J]. Clin Res Hepatol Gastroenterol, 2018, 42: 276-284. http://www.sciencedirect.com/science/article/pii/S2210740117302164
    [46] Anderson KS, Cramer DW, Sibani S, et al. Autoantibody signature for the serologic detection of ovarian cancer[J]. J Proteome Res, 2015, 14: 578-586. doi:  10.1021/pr500908n
    [47] Wang P, Qin J, Ye H, et al. Using a panel of multiple tumor-associated antigens to enhance the autoantibody detection in the immunodiagnosis of ovarian cancer[J]. J Cell Biochem, 2019, 120: 3091-3100. doi:  10.1002/jcb.27497
    [48] Häfner N, Nicolaus K, Weiss S, et al. p53-autoantibody may be more sensitive than CA-125 in monitoring microscopic and macroscopic residual disease after primary therapy for epithelial ovarian cancer[J]. J Cancer Res Clin Oncol, 2013, 139: 1207-1210. doi:  10.1007/s00432-013-1432-2
    [49] Xu L, Lee JR, Hao S, et al. Improved detection of prostate cancer using a magneto-nanosensor assay for serum circulat-ing autoantibodies[J]. PLoS One, 2019, 14: e0221051. http://www.researchgate.net/publication/335130859_Improved_detection_of_prostate_cancer_using_a_magneto-nanosensor_assay_for_serum_circulating_autoantibodies
    [50] Qin J, Wang S, Shi J, et al. Using recursive partitioning approach to select tumor-associated antigens in immunodiagno-sis of gastric adenocarcinoma[J]. Cancer Sci, 2019, 110: 1829-1841. doi:  10.1111/cas.14013
    [51] Lin MC, Huang MC, Lou PJ. Anti-C1GALT1 Autoantibody Is a Novel Prognostic Biomarker for Patients With Head and Neck Cancer[J]. Laryngoscope, 2021, 131: E196-E202. doi:  10.1002/lary.28694
  • 加载中
计量
  • 文章访问数:  203
  • HTML全文浏览量:  14
  • PDF下载量:  82
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-27
  • 录用日期:  2021-06-03
  • 网络出版日期:  2021-06-07
  • 刊出日期:  2021-07-30

目录

    /

    返回文章
    返回