-
摘要: 先天性心脏病(congenital heart disease,CHD)是最常见的先天性缺陷类型,其病因错综复杂,包括遗传因素、非遗传因素及环境因素。参与心脏早期形态发生的转录因子、特异基因和信号通路分子的表达失调均可导致CHD。深入了解CHD的发病机制有助于采取更有效的干预策略和治疗手段,但由于CHD致病机制复杂,目前对其认识仍十分有限。因此,本文将探讨现阶段与CHD发生发展相关的遗传因素、表观遗传因素及母体营养素与代谢产物,并概述目前常用的探究CHD致病机制的研究模型,以期为临床诊疗提供理论依据。Abstract: Congenital heart diseases (CHD) are the most common birth defects worldwide. The etiology of CHD is multifactorial and intricate. Cardiac transcription factors, developmental genes and key molecules of signaling pathways required for early cardiac morphogenesis have been extensively studied in human CHD. Due to the complex etiology, the causes for most of the CHD cases are far from known. A better knowledge of the molecular mechanisms of CHD would enable us to improve intervening strategies and treatment. This review discusses the current progress in the study of the genetics, epigenetic mechanisms, and maternal nutrition underlying CHD, as well as their potential interactions. Besides, we also review the current in vivo/vitro genetic CHD models that can be used for better understanding of the molecular basis underlying CHD, hoping to provide novel therapeutic strategies for clinic treatment.
-
Key words:
- congenital heart disease /
- etiology /
- genetics /
- epigenetics
作者贡献: 艾珊珊负责构思并撰写论文; 何爱彬负责修订及审校论文。利益冲突: 无 -
图 1 不同类型心脏畸形占先天性心脏病的比率[4]
CoA:主动脉缩窄; ASD:房间隔缺损; TOF:法洛四联症; TGA:大动脉移位; PDA:动脉导管未闭; PS:肺动脉狭窄; AS:主动脉狭窄; AVSD:房室间隔缺损; HLHS:左心发育不全综合征; VSD:室间隔缺损
-
[1] Wu WL, He JX, Shao XB. Incidence and mortality trend of congenital heart disease at the global, regional, and national level, 1990-2017[J]. Medicine (Baltimore), 2020, 99: e20593. doi: 10.1097/MD.0000000000020593 [2] Warrington NM, Beaumont RN, Horikoshi M, et al. Maternal and fetal genetic effects on birth weight and their relevance to cardio-metabolic risk factors[J]. Nat Genet, 2019, 51: 804-814. doi: 10.1038/s41588-019-0403-1 [3] Joshi RO, Chellappan S, Kukshal P. Exploring the Role of Maternal Nutritional Epigenetics in Congenital Heart Disease[J]. Curr Dev Nutr, 2020, 4: nzaa166. doi: 10.1093/cdn/nzaa166 [4] Liu YJ, Chen S, Zühlke L, et al. Global birth prevalence of congenital heart defects 1970-2017: updated systematic review and meta-analysis of 260 studies[J]. Int J Epidemiol, 2019, 48: 455-463. doi: 10.1093/ije/dyz009 [5] Campbell M. Genetic and environmental factors in cong-enital heart disease[J]. Q J Med, 1949, 18: 379-391. [6] Zaidi S, Brueckner M. Genetics and Genomics of Congenital Heart Disease[J]. Circ Res, 2017, 120: 923-940. doi: 10.1161/CIRCRESAHA.116.309140 [7] McDaniell R, Warthen DM, Sanchez-Lara PA, et al. NOTCH2 mutations cause Alagille syndrome, a heterogeneous disorder of the notch signaling pathway[J]. Am J Hum Genet, 2006, 79: 169-173. doi: 10.1086/505332 [8] Vecoli C, Pulignani S, Foffa I, et al. Congenital heart disease: the crossroads of genetics, epigenetics and environ-ment[J]. Curr Genomics, 2014, 15: 390-399. doi: 10.2174/1389202915666140716175634 [9] Bondy CA. Turner syndrome 2008[J]. Horm Res, 2009, 71 Suppl 1: 52-56. http://europepmc.org/abstract/MED/19153507 [10] Meyer RE, Liu G, Gilboa SM, et al. Survival of children with trisomy 13 and trisomy 18: A multi-state population-based study[J]. Am J Med Genet A, 2016, 170A: 825-837. http://europepmc.org/abstract/MED/26663415 [11] Tomita-Mitchell A, Mahnke DK, Struble CA, et al. Human gene copy number spectra analysis in congenital heart malformations[J]. Physiol Genomics, 2012, 44: 518-541. doi: 10.1152/physiolgenomics.00013.2012 [12] Silversides CK, Lionel AC, Costain G, et al. Rare copy number variations in adults with tetralogy of Fallot implicate novel risk gene pathways[J]. PLoS Genet, 2012, 8: e1002843. doi: 10.1371/journal.pgen.1002843 [13] Hitz MP, Lemieux-Perreault LP, Marshall C, et al. Rare copy number variants contribute to congenital left-sided heart disease[J]. PLoS Genet, 2012, 8: e1002903. doi: 10.1371/journal.pgen.1002903 [14] Payne AR, Chang SW, Koenig SN, et al. Submicroscopic chromosomal copy number variations identified in children with hypoplastic left heart syndrome[J]. Pediatr Cardiol, 2012, 33: 757-763. doi: 10.1007/s00246-012-0208-9 [15] Goldmuntz E, Paluru P, Glessner J, et al. Microdeletions and microduplications in patients with congenital heart disease and multiple congenital anomalies[J]. Congenit Heart Dis, 2011, 6: 592-602. doi: 10.1111/j.1747-0803.2011.00582.x [16] Jarrell DK, Lennon ML, Jacot JG. Epigenetics and Mechanobiology in Heart Development and Congenital Heart Disease[J]. Diseases, 2019, 7: 52. doi: 10.3390/diseases7030052 [17] Feng LF, Lou JL. DNA Methylation Analysis[J]. Methods Mol Biol, 2019, 1894: 181-227. [18] Sheng W, Qian YY, Wang HJ, et al. DNA methylation status of NKX2-5, GATA4 and HAND1 in patients with tetralogy of fallot[J]. BMC Med Genomics, 2013, 6: 46. doi: 10.1186/1755-8794-6-46 [19] Radhakrishna U, Albayrak S, Alpay-Savasan Z, et al. Genome-Wide DNA Methylation Analysis and Epigenetic Variations Associated with Congenital Aortic Valve Stenosis (AVS)[J]. PLoS One, 2016, 11: e0154010. doi: 10.1371/journal.pone.0154010 [20] Zhang YJ, Sun ZX, Jia JQ, et al. Overview of Histone Modification[J]. Adv Exp Med Biol, 2021, 1283: 1-16. [21] Moore-Morris T, van Vliet PP, Andelfinger G, et al. Role of Epigenetics in Cardiac Development and Congenital Diseases[J]. Physiol Rev, 2018, 98: 2453-2475. doi: 10.1152/physrev.00048.2017 [22] Blakeslee WW, Demos-Davies KM, Lemon DD, et al. Histone deacetylase adaptation in single ventricle heart disease and a young animal model of right ventricular hypertrophy[J]. Pediatr Res, 2017, 82: 642-649. doi: 10.1038/pr.2017.126 [23] Chen L, Ma YL, Kim EY, et al. Conditional ablation of Ezh2 in murine hearts reveals its essential roles in endocardial cushion formation, cardiomyocyte proliferation and survival[J]. PLoS One, 2012, 7: e31005. doi: 10.1371/journal.pone.0031005 [24] Kobayashi J, Yoshida M, Tarui S, et al. Directed differentiation of patient-specific induced pluripotent stem cells identifies the transcriptional repression and epigenetic modification of NKX2-5, HAND1, and NOTCH1 in hypoplastic left heart syndrome[J]. PLoS One, 2014, 9: e102796. doi: 10.1371/journal.pone.0102796 [25] Lee S, Lee JW, Lee SK. UTX, a histone H3-lysine 27 demethylase, acts as a critical switch to activate the cardiac developmental program[J]. Dev Cell, 2012, 22: 25-37. doi: 10.1016/j.devcel.2011.11.009 [26] Lickert H, Takeuchi JK, Von Both I, et al. Baf60c is essential for function of BAF chromatin remodelling complexes in heart development[J]. Nature, 2004, 432: 107-112. doi: 10.1038/nature03071 [27] Takeuchi JK, Lou X, Alexander JM, et al. Chromatin remodelling complex dosage modulates transcription factor function in heart development[J]. Nat Commun, 2011, 2: 187. doi: 10.1038/ncomms1187 [28] Chen L, Fulcoli FG, Ferrentino R, et al. Transcriptional control in cardiac progenitors: Tbx1 interacts with the BAF chromatin remodeling complex and regulates Wnt5a[J]. PLoS Genet, 2012, 8: e1002571. doi: 10.1371/journal.pgen.1002571 [29] Lange M, Kaynak B, Forster UB, et al. Regulation of muscle development by DPF3, a novel histone acetylation and methylation reader of the BAF chromatin remodeling complex[J]. Genes Dev, 2008, 22: 2370-2384. doi: 10.1101/gad.471408 [30] Gu M, Zheng AB, Tu WJ, et al. Circulating LncRNAs as Novel, Non-Invasive Biomarkers for Prenatal Detection of Fetal Congenital Heart Defects[J]. Cell Physiol Biochem, 2016, 38: 1459-1471. doi: 10.1159/000443088 [31] Cheng ZJ, Zhang QJ, Yin AW, et al. The long non-coding RNA uc. 4 influences cell differentiation through the TGF-beta signaling pathway[J]. Exp Mol Med, 2018, 50: e447. doi: 10.1038/emm.2017.278 [32] Anderson KM, Anderson DM, McAnally JR, et al. Transcription of the non-coding RNA upperhand controls Hand2 expression and heart development[J]. Nature, 2016, 539: 433-436. doi: 10.1038/nature20128 [33] O'Brien J, Hayder H, Zayed Y, et al. Overview of Micro-RNA Biogenesis, Mechanisms of Actions, and Circulation[J]. Front Endocrinol (Lausanne), 2018, 9: 402. doi: 10.3389/fendo.2018.00402 [34] Tian J, An XJ, Niu L. Role of microRNAs in cardiac development and disease[J]. Exp Ther Med, 2017, 13: 3-8. doi: 10.3892/etm.2016.3932 [35] Li D, Ji L, Liu LB, et al. Characterization of circulating microRNA expression in patients with a ventricular septal defect[J]. PLoS One, 2014, 9: e106318. doi: 10.1371/journal.pone.0106318 [36] Sucharov CC, Sucharov J, Karimpour-Fard A, et al. Micro-RNA expression in hypoplastic left heart syndrome[J]. J Card Fail, 2015, 21: 83-88. doi: 10.1016/j.cardfail.2014.09.013 [37] Huang JC, Li XB, Li HY, et al. Down-regulation of microRNA-184 contributes to the development of cyanotic congenital heart diseases[J]. Int J Clin Exp Pathol, 2015, 8: 14221-14227. http://europepmc.org/abstract/MED/26823736 [38] Liu LP, Yuan YH, He XH, et al. MicroRNA-1 upregula-tion promotes myocardiocyte proliferation and suppresses apoptosis during heart development[J]. Mol Med Rep, 2017, 15: 2837-2842. doi: 10.3892/mmr.2017.6282 [39] Liang DD, Xu XR, Deng FF, et al. miRNA-940 reduction contributes to human Tetralogy of Fallot development[J]. J Cell Mol Med, 2014, 18: 1830-1839. doi: 10.1111/jcmm.12309 [40] Garside VC, Chang AC, Karsan A, et al. Co-ordinating Notch, BMP, and TGF-beta signaling during heart valve development[J]. Cell Mol Life Sci, 2013, 70: 2899-2917. doi: 10.1007/s00018-012-1197-9 [41] MacGrogan D, Münch J, de la Pompa JL. Notch and interacting signalling pathways in cardiac development, disease, and regeneration[J]. Nat Rev Cardiol, 2018, 15: 685-704. doi: 10.1038/s41569-018-0100-2 [42] Penton AL, Leonard LD, Spinner NB. Notch signaling in human development and disease[J]. Semin Cell Dev Biol, 2012, 23: 450-457. doi: 10.1016/j.semcdb.2012.01.010 [43] Iascone M, Ciccone R, Galletti L, et al. Identification of de novo mutations and rare variants in hypoplastic left heart syndrome[J]. Clin Genet, 2012, 81: 542-554. doi: 10.1111/j.1399-0004.2011.01674.x [44] Lim JA, Baek HJ, Jang MS, et al. Loss of beta2-spectrin prevents cardiomyocyte differentiation and heart development[J]. Cardiovasc Res, 2014, 101: 39-47. doi: 10.1093/cvr/cvt222 [45] Feng Y, Zhao LZ, Hong L, et al. Alteration in methylation pattern of GATA-4 promoter region in vitamin A-deficient offspring's heart[J]. J Nutr Biochem, 2013, 24: 1373-1380. doi: 10.1016/j.jnutbio.2012.11.005 [46] Persson M, Razaz N, Edstedt Bonamy AK, et al. Maternal Overweight and Obesity and Risk of Congenital Heart Defects[J]. J Am Coll Cardiol, 2019, 73: 44-53. http://www.sciencedirect.com/science/article/pii/S0735109718390867 [47] Pezhouman A, Engel JL, Nguyen NB, et al. Isolation and characterization of hESC-derived heart field-specific cardiomyocytes unravels new insights into their transcriptional and electrophysiological profiles[J]. Cardiovasc Res, 2021: cvab102. doi: 10.1093/cvr/cvab102.Epubaheadofprint. [48] Bakkers J. Zebrafish as a model to study cardiac develop-ment and human cardiac disease[J]. Cardiovasc Res, 2011, 91: 279-288. doi: 10.1093/cvr/cvr098 [49] Nakanishi T, Markwald RR, Baldwin HS, et al. Etiology and Morphogenesis of Congenital Heart Disease: From Gene Function and Cellular Interaction to Morphology[M]. Tokyo: Springer, 2016: 321-327. [50] Jenkins KJ, Correa A, Feinstein JA, et al. Noninherited risk factors and congenital cardiovascular defects: current knowledge: a scientific statement from the American Heart Association Council on Cardiovascular Disease in the Young: endorsed by the American Academy of Pediatrics[J]. Circulation, 2007, 115: 2995-3014. doi: 10.1161/CIRCULATIONAHA.106.183216 [51] Botto LD, Mulinare J, Erickson JD. Occurrence of con-genital heart defects in relation to maternal mulitivitamin use[J]. Am J Epidemiol, 2000, 151: 878-884. doi: 10.1093/oxfordjournals.aje.a010291 -