留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

蕈样肉芽肿免疫标志物及相关药物治疗进展

韩婕 余红

韩婕, 余红. 蕈样肉芽肿免疫标志物及相关药物治疗进展[J]. 协和医学杂志, 2021, 12(4): 568-574. doi: 10.12290/xhyxzz.20200278
引用本文: 韩婕, 余红. 蕈样肉芽肿免疫标志物及相关药物治疗进展[J]. 协和医学杂志, 2021, 12(4): 568-574. doi: 10.12290/xhyxzz.20200278
HAN Jie, YU Hong. Progress in Immune Markers and Relevant Drug Therapies of Mycosis Fungoides[J]. Medical Journal of Peking Union Medical College Hospital, 2021, 12(4): 568-574. doi: 10.12290/xhyxzz.20200278
Citation: HAN Jie, YU Hong. Progress in Immune Markers and Relevant Drug Therapies of Mycosis Fungoides[J]. Medical Journal of Peking Union Medical College Hospital, 2021, 12(4): 568-574. doi: 10.12290/xhyxzz.20200278

蕈样肉芽肿免疫标志物及相关药物治疗进展

doi: 10.12290/xhyxzz.20200278
详细信息
    通讯作者:

    余红  电话:021-25076929,E-mail:smallgrass6@163.com

  • 中图分类号: R739.5;R730.5

Progress in Immune Markers and Relevant Drug Therapies of Mycosis Fungoides

More Information
  • 摘要: 蕈样肉芽肿(mycosis fungoides,MF)是一种原发性皮肤T细胞淋巴瘤,既往研究证实其发病与免疫学异常密切相关。近年来,治疗MF的新药陆续出现,尤其是分子靶向药物,其作用机制与相应的免疫标志物相关。本文就MF免疫标志物及其相关药物治疗进展进行综述。
    作者贡献:韩婕负责查阅文献、撰写论文;余红负责审阅、修订论文。
    利益冲突:
  • [1] 贾近博, 张乔安, 陈明华. 趋化因子受体4与Foxp3+调节性T细胞在蕈样肉芽肿皮损中的表达及其意义初探[J]. 临床皮肤科杂志, 2014, 43: 389-392. https://www.cnki.com.cn/Article/CJFDTOTAL-LCPF201407002.htm

    Jia JB, Zhang QA, Chen MH. The expression and significance of CC chemokine receptor 4 and Foxp3+ regulatory T cells in mycosis fungoides[J]. Linchuang Pifuke Zazhi, 2014, 43: 389-392. https://www.cnki.com.cn/Article/CJFDTOTAL-LCPF201407002.htm
    [2] Hsi AC, Lee SJ, Rosman IS, et al. Expression of helper T cell master regulators in inflammatory dermatoses and primary cutaneous T-cell lymphomas: diagnostic implications[J]. J Am Acad Dermatol, 2015, 72: 159-167. doi:  10.1016/j.jaad.2014.09.022
    [3] Hodak E, Amitay-Laish I. Mycosis fungoides: A great imitator[J]. Clin Dermatol, 2019, 37: 255-267. doi:  10.1016/j.clindermatol.2019.01.004
    [4] Kalay Yildizhan I, Sanli H, Akay BN, et al. CD8+cytotoxic mycosis fungoides: a retrospective analysis of clinical features and follow-up results of 29 patients[J]. Int J Dermatol, 2020, 59: 127-133. doi:  10.1111/ijd.14689
    [5] Martinez-Escala ME, Kantor RW, Cices A, et al. CD8+ mycosis fungoides: A low-grade lymphoproliferative disorder[J]. J Am Acad Dermatol, 2017, 77: 489-496. doi:  10.1016/j.jaad.2017.05.015
    [6] Kampa F, Mitteldorf C. A review of CD30 expression in cutaneous neoplasms[J]. J Cutan Pathol, 2021, 48: 495-510. doi:  10.1111/cup.13894
    [7] Danish HH, Liu S, Jhaveri J, et al. Validation of cutane-ous lymphoma international prognostic index(CLIPI) for mycosis fungoides and Sézary syndrome[J]. Leuk Lymphoma, 2016, 57: 2813-2819. doi:  10.3109/10428194.2016.1173210
    [8] Talpur R, Singh L, Daulat S, et al. Long-term outcomes of 1, 263 patients with mycosis fungoides and Sézary syndrome from 1982 to 2009[J]. Clin Cancer Res, 2012, 18: 5051-5060. doi:  10.1158/1078-0432.CCR-12-0604
    [9] Sugaya M, Morimura S, Suga H, et al. CCR4 is expressed on infiltrating cells in lesional skin of early mycosis fungoides and atopic dermatitis[J]. J Dermatol, 2015, 42: 613-615. doi:  10.1111/1346-8138.12852
    [10] Shono Y, Suga H, Kamijo H, et al. Expression of CCR3 and CCR4 Suggests a Poor Prognosis in Mycosis Fungoides and Sézary Syndrome[J]. Acta Derm Venereol, 2019, 99: 809-812. doi:  10.2340/00015555-3207
    [11] Maj J, Jankowska-Konsur AM, Hałoń A, et al. Expression of CXCR4 and CXCL12 and their correlations to the cell proliferation and angiogenesis in mycosis fungoides[J]. Postepy Dermatol Alergol, 2015, 32: 437-442. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4697019/
    [12] Kakinuma T, Sugaya M, Nakamura K, et al. Thymus and activation-regulated chemokine (TARC/CCL17) in mycosis fungoides: serum TARC levels reflect the disease activity of mycosis fungoides[J]. J Am Acad Dermatol, 2003, 48: 23-30. doi:  10.1067/mjd.2003.132
    [13] Rubio Gonzalez B, Zain J, Rosen ST, et al. Tumor microenvironment in mycosis fungoides and Sézary syndrome[J]. Curr Opin Oncol, 2016, 28: 88-96. doi:  10.1097/CCO.0000000000000243
    [14] Li X, Sun S, Li N, et al. High Expression of CCR7 Predicts Lymph Node Metastasis and Good Prognosis in Triple Negative Breast Cancer[J]. Cell Physiol Biochem, 2017, 43: 531-539. doi:  10.1159/000480526
    [15] Hu SC, Lin CL, Hong CH, et al. CCR7 expression correlates with subcutaneous involvement in mycosis fungoides skin lesions and promotes migration of mycosis fungoides cells (MyLa) through mTOR activation[J]. J Dermatol Sci, 2014, 74: 31-38. doi:  10.1016/j.jdermsci.2013.12.003
    [16] Hong CH, Lin SH, Lee CH. CCL21 Induces mTOR-dependent MALAT1 Expression, Leading to Cell Migration in Cutaneous T-Cell Lymphoma[J]. In Vivo, 2019, 33: 793-800. doi:  10.21873/invivo.11541
    [17] Pileri A, Agostinelli C, Sessa M, et al. Langerhans, plasmacytoid dendritic and myeloid-derived suppressor cell levels in mycosis fungoides vary according to the stage of the disease[J]. Virchows Arch, 2017, 470: 575-582. doi:  10.1007/s00428-017-2107-1
    [18] Fawzy MM, El-Latif MIA, Hegazy RA, et al. Expression of langerhans cells, dermal dendritic cells and plasmacytoid dendritic cells in early stage mycosis fungoides: Case control study[J]. J Dermatol Sci, 2016, 84: e24.
    [19] Vieyra-Garcia P, Crouch JD, O'Malley JT, et al. Benign T cells drive clinical skin inflammation in cutaneous T cell lymphoma[J]. JCI Insight, 2019, 4: e124233. doi:  10.1172/jci.insight.124233
    [20] Ohmatsu H, Humme D, Gonzalez J, et al. IL-32 induces indoleamine 2, 3-dioxygenase+CD1c+ dendritic cells and indoleamine 2, 3-dioxygenase+CD163+ macrophages: Relevance to mycosis fungoides progression[J]. Oncoimmunology, 2016, 6: e1181237. http://europepmc.org/abstract/MED/28344860
    [21] Ohmatsu H, Humme D, Gulati N, et al. IL32 is progressively expressed in mycosis fungoides independent of helper T-cell 2 and helper T-cell 9 polarization[J]. Cancer Immunol Res, 2014, 2: 890-900. doi:  10.1158/2326-6066.CIR-13-0199-T
    [22] Kado JA, Shango M, Mehregan C, et al. Mapping Toll-like receptor activity in different stages of cutaneous T-cell lymphoma[J]. Am J Dermatopathol, 2012, 34: 691-698. doi:  10.1097/DAD.0b013e3182448f7c
    [23] El Tawdy AM, Amin IM, Abdel Hay RM, et al. Toll-like receptor (TLR)7 expression in mycosis fungoides and psoriasis: a case-control study[J]. Clin Exp Dermatol, 2017, 42: 172-177. doi:  10.1111/ced.13008
    [24] Nguyen GH, Olson LC, Magro CM. Upregulation of inhibitory signaling receptor programmed death marker-1 (PD-1) in disease evolution from cutaneous lymphoid dyscrasias to mycosis fungoides and Sézary's syndrome[J]. Ann Diagn Pathol, 2017, 28: 54-59. doi:  10.1016/j.anndiagpath.2017.02.003
    [25] Kantekure K, Yang Y, Raghunath P, et al. Expression Patterns of the Immunosuppressive Proteins PD-1/CD279 and PD-L1/CD274 at Different Stages of Cutaneous T-Cell Lymphoma/Mycosis Fungoides[J]. Am J Dermatopathol, 2012, 34: 126-128. doi:  10.1097/DAD.0b013e31821c35cb
    [26] Zic JA. Extracorporeal Photopheresis in the Treatment of Mycosis Fungoides and Sézary Syndrome[J]. Dermatol Clin, 2015, 33: 765-776. doi:  10.1016/j.det.2015.05.011
    [27] Janiga J, Kentley J, Nabhan C, et al. Current systemic therapeutic options for advanced mycosis fungoides and Sézary syndrome[J]. Leuk Lymphoma, 2018, 59: 562-577. doi:  10.1080/10428194.2017.1347650
    [28] Stewart JR, Desai N, Rizvi S, et al. Alemtuzumab is an effective third-line treatment versus single-agent gemcitabine or pralatrexate for refractory Sézary syndrome: a systematic review[J]. Eur J Dermatol, 2018, 28: 764-774. http://www.ncbi.nlm.nih.gov/pubmed/30591425
    [29] Kim YH, Tavallaee M, Sundram U, et al. Phase Ⅱ Investigator-Initiated Study of Brentuximab Vedotin in Mycosis Fungoides and Sézary Syndrome With Variable CD30 Expression Level: A Multi-Institution Collaborative Project[J]. J Clin Oncol, 2015, 33: 3750-3758. doi:  10.1200/JCO.2014.60.3969
    [30] Duvic M, Tetzlaff MT, Gangar P, et al. Results of a Phase II Trial of Brentuximab Vedotin for CD30+Cutaneous T-Cell Lymphoma and Lymphomatoid Papulosis[J]. J Clin Oncol, 2015, 33: 3759-3765. doi:  10.1200/JCO.2014.60.3787
    [31] Prince HM, Kim YH, Horwitz SM, et al. Brentuximab vedotin or physician's choice in CD30-positive cutaneous T-cell lymphoma (ALCANZA): an international, open-label, randomised, phase 3, multicentre trial[J]. Lancet, 2017, 390: 555-566. doi:  10.1016/S0140-6736(17)31266-7
    [32] Duvic M, Pinter-Brown LC, Foss FM, et al. Phase 1/2 study of mogamulizumab, a defucosylated anti-CCR4 antibody, in previously treated patients with cutaneous T-cell lymphoma[J]. Blood, 2015, 125: 1883-1889. doi:  10.1182/blood-2014-09-600924
    [33] Kasamon YL, Chen H, De Claro RA, et al. FDA Approval Summary: Mogamulizumab-kpkc for Mycosis Fungoides and Sézary Syndrome[J]. Clin Cancer Res, 2019, 25: 7275-7280. doi:  10.1158/1078-0432.CCR-19-2030
    [34] Duvic M, Sherman ML, Wood GS, et al. A phase II open-label study of recombinant human interleukin-12 in patients with stage IA, IB, or IIA mycosis fungoides[J]. J Am Acad Dermatol, 2006, 55: 807-813. doi:  10.1016/j.jaad.2006.06.038
    [35] Duvic M, Geskin L, Prince HM. Duration of response in cutaneous T-cell lymphoma patients treated with denileukin diftitox: results from 3 phase III studies[J]. Clin Lymphoma Myeloma Leuk, 2013, 13: 377-384. doi:  10.1016/j.clml.2013.02.020
    [36] Ohmachi K, Ando K, Ogura M, et al. E7777 in Japanese patients with relapsed/refractory peripheral and cutaneous T-cell lymphoma: A phase I study[J]. Cancer Sci, 2018, 109: 794-802. doi:  10.1111/cas.13513
    [37] Kawai H, Ando K, Maruyama D, et al. Phase II study of E7777 in Japanese patients with relapsed/refractory peripheral and cutaneous T-cell lymphoma[J]. Cancer Sci, 2021, 112: 2426-2435. doi:  10.1111/cas.14906
    [38] Ramelyte E, Dummer R, Guenova E. Investigative drugs for the treatment of cutaneous T-cell lymphomas (CTCL): an update[J]. Expert Opin Investig Drugs, 2019, 28: 799-809. doi:  10.1080/13543784.2019.1654995
    [39] Shalabi D, Bistline A, Alpdogan O, et al. Immune evasion and current immunotherapy strategies in mycosis fungoides (MF) and Sézary syndrome (SS)[J]. Chin Clin Oncol, 2019, 8: 11. doi:  10.21037/cco.2019.01.01
    [40] Lewis DJ, Byekova YA, Emge DA, et al. Complete resolution of mycosis fungoides tumors with imiquimod 5% cream: a case series[J]. J Dermatolog Treat, 2017, 28: 567-569. doi:  10.1080/09546634.2017.1294728
    [41] Rook AH, Gelfand JM, Wysocka M, et al. Topical resiquimod can induce disease regression and enhance T-cell effector functions in cutaneous T-cell lymphoma[J]. Blood, 2015, 126: 1452-1461. http://smartsearch.nstl.gov.cn/paper_detail.html?id=2cefd2fbefc79ce641c0b56665910788
    [42] Lesokhin AM, Ansell SM, Armand P, et al. Nivolumab in Patients With Relapsed or Refractory Hematologic Malignancy: Preliminary Results of a Phase Ib Study[J]. J Clin Oncol, 2016, 34: 2698-2704. doi:  10.1200/JCO.2015.65.9789
    [43] Khodadoust MS, Rook AH, Porcu P, et al. Pembrolizu-mab in Relapsed and Refractory Mycosis Fungoides and Sézary Syndrome: A Multicenter Phase Ⅱ Study[J]. J Clin Oncol, 2020, 38: 20-28. http://www.researchgate.net/publication/335905923_Pembrolizumab_in_Relapsed_and_Refractory_Mycosis_Fungoides_and_Sezary_Syndrome_A_Multicenter_Phase_II_Study
    [44] Trager MH, Geskin LJ. Current status of histone deacety-lase inhibitors in cutaneous T-cell lymphoma[J]. G Ital Dermatol Venereol, 2019, 154: 681-95. http://www.ncbi.nlm.nih.gov/pubmed/31859467
    [45] Foss F, Advani R, Duvic M, et al. A Phase Ⅱ trial of Belinostat (PXD101) in patients with relapsed or refractory peripheral or cutaneous T-cell lymphoma[J]. Br J Haematol, 2015, 168: 811-819. doi:  10.1111/bjh.13222
    [46] Duvic M, Dummer R, Becker JC, et al. Panobinostat activity in both bexarotene-exposed and -naive patients with refractory cutaneous T-cell lymphoma: results of a phase Ⅱ trial[J]. Eur J Cancer, 2013, 49: 386-394. doi:  10.1016/j.ejca.2012.08.017
    [47] Child F, Ortiz-Romero PL, Alvarez R, et al. Phase Ⅱ multicentre trial of oral quisinostat, a histone deacetylase inhibitor, in patients with previously treated stage IB-IVA mycosis fungoides/Sézary syndrome[J]. Br J Dermatol, 2016, 175: 80-88. doi:  10.1111/bjd.14427
    [48] Che Y, Ding X, Song J, et al. Effective remission of chidamide on treatment of advanced mycosis fungoides: An unusual case report[J]. Dermatol Ther, 2019, 32: e12944. http://www.ncbi.nlm.nih.gov/pubmed/31012254
    [49] Oka S, Yokote T, Hara S, et al. Effective treatment of a case of refractory mycosis fungoides with imatinib[J]. Br J Haematol, 2006, 133: 353. doi:  10.1111/j.1365-2141.2006.06046.x
    [50] Geskin LJ, Viragova S, Stolz DB, et al. Interleukin-13 is overexpressed in cutaneous T-cell lymphoma cells and regulates their proliferation[J]. Blood, 2015, 125: 2798-2805. doi:  10.1182/blood-2014-07-590398
    [51] Miyashiro D, Vivarelli AG, Gonçalves F, et al. Progres-sion of mycosis fungoides after treatment with dupilumab: A case report[J]. Dermatol Ther, 2020, 33: e13880. doi:  10.1111/dth.13880
    [52] Ayasse M, Nelson K, Glass F, et al. Mycosis Fungoides Unmasked by Dupilumab Treatment in a Patient With a History of Atopic Dermatitis[J]. Dermatitis, 2020. doi: 10.1097/DER.0000000000000679.[Epubaheadofprint].
  • 加载中
计量
  • 文章访问数:  49
  • HTML全文浏览量:  22
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-24
  • 录用日期:  2021-04-08
  • 网络出版日期:  2021-06-28
  • 刊出日期:  2021-07-30

目录

    /

    返回文章
    返回