[1]
|
Ganetzky R, Izumi K, Edmondson A, et al. Fetal akinesia deformation sequence due to a congenital disorder of glycosylation[J]. Am J Med Genet A, 2015, 167A:2411-2417. |
[2]
|
彭晓音, 翟宇晋, 宋昉, 等.COL6A3基因变异所致VI型胶原蛋白缺乏相关肌病的临床与遗传学分析[J].中华儿科杂志, 2019, 57:136-141. doi: 10.3760/cma.j.issn.0578-1310.2019.02.014 |
[3]
|
Bonnemann CG. The collagen VI-related myopathies Ullrich congenital muscular dystrophy and Bethlem myopathy[J]. Handbook Clin Neurol, 2011, 101:81-96. |
[4]
|
Panadés-de Oliveira L, Rodríguez-López C, Cantero Montenegro D, et al. Bethlem myopathy: a series of 16 patients and description of seven new associated mutations[J]. J Neurol, 2019, 266:934-941. doi: 10.1007/s00415-019-09217-z |
[5]
|
Allamand V, Brinas L, Richard P, et al. ColVI myopathies: where do we stand, where do we go?[J]. Skelet Muscle, 2011, 1:30. doi: 10.1186/2044-5040-1-30 |
[6]
|
Hicks D, Lampe AK, Barresi R, et al. A refined diagnostic algorithm for Bethlem myopathy[J]. Neurology, 2008, 70:1192-1199. doi: 10.1212/01.wnl.0000307749.66438.6d |
[7]
|
戴毅, 易鑫, 任海涛, 等.VI型胶原蛋白相关肌病的临床特点与致病基因分析[J].中华神经科杂志, 2015, 48:974-979. doi: 10.3760/cma.j.issn.1006-7876.2015.11.008 |
[8]
|
Ten Dam L, van der Kooi AJ, van Wattingen M, et al. Reliability and accuracy of skeletal muscle imaging in limb-girdle muscular dystrophies[J]. Neurology, 2012, 79:1716-1723. doi: 10.1212/WNL.0b013e31826e9b73 |
[9]
|
Brull A, Morales Rodriguez B, Bonne G. The Pathogenesis and Therapies of Striated Muscle Laminopathies[J]. Front Physiol, 2018, 9:1533. doi: 10.3389/fphys.2018.01533 |
[10]
|
Ghosh PS, Milone M. Clinical Reasoning: A 38-year-old woman with childhood-onset weakness[J]. Neurology, 2014, 83:e81-e84. doi: 10.1212/WNL.0000000000000698 |
[11]
|
Patni N, Li XL, Adams-Huet B, et al. Regional Body Fat Changes and Metabolic Complications in Children With Dunnigan Lipodystrophy-Causing LMNA Variants[J]. J Clin Endocrinol Metab, 2019, 104:1099-1108. doi: 10.1210/jc.2018-01922 |
[12]
|
Wang X, Zabell A, Koh W. Lamin A/C Cardiomyopathies: Current Understanding and Novel Treatment Strategies[J]. Curr Treat Options Cardiovasc Med, 2017, 19:21. doi: 10.1007/s11936-017-0520-z |
[13]
|
Tan D, Yang H, Yuan Y, et al. Phenotype-Genotype Analysis of Chinese Patients with Early-Onset LMNA-Related Muscular Dystrophy[J]. PLoS One, 2015, 10:e0129699. doi: 10.1371/journal.pone.0129699 |
[14]
|
Madej-Pilarczyk A.Clinical aspects of Emery-Dreifuss muscular dystrophy[J]. Nucleus, 2018, 9:268-274. |
[15]
|
Malfatti E, Olivé M, Taratuto AL, et al. Skeletal Muscle Biopsy Analysis in Reducing Body Myopathy and Other FHL1-Related Disorders[J]. J Neuropathol Exp Neurol, 2013, 72:833-845. doi: 10.1097/NEN.0b013e3182a23506 |
[16]
|
Schessl J, Taratuto AL, Sewry C, et al. Clinical, histolo-gical and genetic characterization of reducing body myopathy caused by mutations in FHL1[J]. Brain, 2009, 132:452-464. doi: 10.1093/brain/awn325 |
[17]
|
Jokela M, Huovinen S, Palmio J, et al. Gluteus maximus hypertrophy-a diagnostic clue in four and a half lim domain 1-mutated reducing body myopathy[J]. Neuromuscul Disord, 2017, 27:962-963. doi: 10.1016/j.nmd.2017.06.014 |
[18]
|
Chen DH, Raskind WH, Parson WW, et al. A novel mutation in FHL1 in a family with X-linked scapuloperoneal myopathy: phenotypic spectrum and structural study of FHL1 mutations[J]. J Neurol Sci, 2010, 296:22-29. doi: 10.1016/j.jns.2010.06.017 |
[19]
|
Binder JS, Weidemann F, Schoser B, et al. Spongious hypertrophic cardiomyopathy in patients with mutations in the four-and-a-half-LIM domain 1 gene[J]. Circ Cardiovasc Gene, 2012, 5:490-502. doi: 10.1161/CIRCGENETICS.111.962332 |
[20]
|
Feldkirchner S, Walter MC, Müller S, et al. Proteomic characterization of aggregate components in an intrafamilial variable FHL1-associated myopathy[J]. Neuromuscul Disord, 2013, 23:418-426. doi: 10.1016/j.nmd.2013.02.006 |
[21]
|
San Román I, Navarro M, Martínez F, et al. Unclassifiable arrhythmic cardiomyopathy associated with Emery-Dreifuss caused by a mutation in FHL1[J]. Clin Genet, 2016, 90:171-176. doi: 10.1111/cge.12760 |
[22]
|
Park YE, Kim DS, Shin JH.Myofibrillar myopathy caused by a novel FHL1 mutation presenting a mild myopathy with ankle contracture[J]. Clin Neurol Neurosurg, 2019, 180:48-51. doi: 10.1016/j.clineuro.2019.03.015 |
[23]
|
Saini AG, Padmanabha H, Kumar S, et al. SEPN1-related Rigid Spine Muscular Dystrophy[J]. Indian J Pediatr, 2018, 85:1033-1034. doi: 10.1007/s12098-018-2713-1 |
[24]
|
Ziyaee F, Shorafa E, Dastsooz H. A novel mutation in SEPN1 causing rigid spine muscular dystrophy 1: a Case report[J]. BMC Med Genet, 2019, 20:13. |
[25]
|
Scoto M, Cirak S, Mein R, et al. SEPN1-related myopa-thies: clinical course in a large cohort of patients[J]. Neurology, 2011, 76:2073-2078. doi: 10.1212/WNL.0b013e31821f467c |
[26]
|
Caggiano S, Khirani S, Dabaj I, et al. Diaphragmatic dysfunction in SEPN1-related myopathy[J]. Neuromuscul Disord, 2017, 27:747-755. doi: 10.1016/j.nmd.2017.04.010 |
[27]
|
Varone E, Pozzer D, Di Modica S, et al. SELENON (SEPN1) protects skeletal muscle from saturated fatty acid-induced ER stress and insulin resistance[J]. Redox Biol, 2019, 24:101176. doi: 10.1016/j.redox.2019.101176 |