留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

伴关节挛缩的遗传性肌肉病

孙晓晗 崔丽英

孙晓晗, 崔丽英. 伴关节挛缩的遗传性肌肉病[J]. 协和医学杂志, 2021, 12(1): 80-85. doi: 10.12290/xhyxzz.20200152
引用本文: 孙晓晗, 崔丽英. 伴关节挛缩的遗传性肌肉病[J]. 协和医学杂志, 2021, 12(1): 80-85. doi: 10.12290/xhyxzz.20200152
SUN Xiao-han, CUI Li-yin. Hereditary Myopathy with Joint Contracture[J]. Medical Journal of Peking Union Medical College Hospital, 2021, 12(1): 80-85. doi: 10.12290/xhyxzz.20200152
Citation: SUN Xiao-han, CUI Li-yin. Hereditary Myopathy with Joint Contracture[J]. Medical Journal of Peking Union Medical College Hospital, 2021, 12(1): 80-85. doi: 10.12290/xhyxzz.20200152

伴关节挛缩的遗传性肌肉病

doi: 10.12290/xhyxzz.20200152
基金项目: 

中国医学科学院医学与健康科技创新工程 2016-I2M-1-004

重要罕见病的临床诊疗规范研究 2016YFC0905103

中国科学院B类先导科技专项培育项目 XDB39040100

详细信息
    通讯作者:

    崔丽英  电话:010-69151371,E-mail: pumchcuily@yahoo.com

  • 中图分类号: R322.7+2;S857.16+6

Hereditary Myopathy with Joint Contracture

More Information
  • 摘要: 肌肉病按病因可分为先天遗传性和后天获得性,临床表现并不特异,包括肌无力、肌肉萎缩、肌肉肥大、关节挛缩等,部分患者也可能会有心肌、呼吸肌、皮肤、中枢及周围神经系统等骨骼肌外受累表现。一些患者肌无力症状较轻,而关节挛缩或脊柱强直症状较明显,这一特殊表现为疾病诊断提供了线索。临床接诊时,医生需详细询问患者家族史,认真进行神经系统查体以及心肌和呼吸系统的综合评估,从而作出初步诊断; 肌电图、肌肉MRI、骨骼肌/皮肤活检和基因检测等辅助检查有助于明确诊断。本文重点介绍伴关节挛缩的遗传性肌肉病,包括胶原纤维病Ⅵ型、Emery-Dreifuss肌营养不良、SEPN1相关肌病以及FHL1相关肌病等,以提高临床对该病的认知。
    利益冲突  无
  • [1] Ganetzky R, Izumi K, Edmondson A, et al. Fetal akinesia deformation sequence due to a congenital disorder of glycosylation[J]. Am J Med Genet A, 2015, 167A:2411-2417.
    [2] 彭晓音, 翟宇晋, 宋昉, 等.COL6A3基因变异所致VI型胶原蛋白缺乏相关肌病的临床与遗传学分析[J].中华儿科杂志, 2019, 57:136-141. doi:  10.3760/cma.j.issn.0578-1310.2019.02.014
    [3] Bonnemann CG. The collagen VI-related myopathies Ullrich congenital muscular dystrophy and Bethlem myopathy[J]. Handbook Clin Neurol, 2011, 101:81-96.
    [4] Panadés-de Oliveira L, Rodríguez-López C, Cantero Montenegro D, et al. Bethlem myopathy: a series of 16 patients and description of seven new associated mutations[J]. J Neurol, 2019, 266:934-941. doi:  10.1007/s00415-019-09217-z
    [5] Allamand V, Brinas L, Richard P, et al. ColVI myopathies: where do we stand, where do we go?[J]. Skelet Muscle, 2011, 1:30. doi:  10.1186/2044-5040-1-30
    [6] Hicks D, Lampe AK, Barresi R, et al. A refined diagnostic algorithm for Bethlem myopathy[J]. Neurology, 2008, 70:1192-1199. doi:  10.1212/01.wnl.0000307749.66438.6d
    [7] 戴毅, 易鑫, 任海涛, 等.VI型胶原蛋白相关肌病的临床特点与致病基因分析[J].中华神经科杂志, 2015, 48:974-979. doi:  10.3760/cma.j.issn.1006-7876.2015.11.008
    [8] Ten Dam L, van der Kooi AJ, van Wattingen M, et al. Reliability and accuracy of skeletal muscle imaging in limb-girdle muscular dystrophies[J]. Neurology, 2012, 79:1716-1723. doi:  10.1212/WNL.0b013e31826e9b73
    [9] Brull A, Morales Rodriguez B, Bonne G. The Pathogenesis and Therapies of Striated Muscle Laminopathies[J]. Front Physiol, 2018, 9:1533. doi:  10.3389/fphys.2018.01533
    [10] Ghosh PS, Milone M. Clinical Reasoning: A 38-year-old woman with childhood-onset weakness[J]. Neurology, 2014, 83:e81-e84. doi:  10.1212/WNL.0000000000000698
    [11] Patni N, Li XL, Adams-Huet B, et al. Regional Body Fat Changes and Metabolic Complications in Children With Dunnigan Lipodystrophy-Causing LMNA Variants[J]. J Clin Endocrinol Metab, 2019, 104:1099-1108. doi:  10.1210/jc.2018-01922
    [12] Wang X, Zabell A, Koh W. Lamin A/C Cardiomyopathies: Current Understanding and Novel Treatment Strategies[J]. Curr Treat Options Cardiovasc Med, 2017, 19:21. doi:  10.1007/s11936-017-0520-z
    [13] Tan D, Yang H, Yuan Y, et al. Phenotype-Genotype Analysis of Chinese Patients with Early-Onset LMNA-Related Muscular Dystrophy[J]. PLoS One, 2015, 10:e0129699. doi:  10.1371/journal.pone.0129699
    [14] Madej-Pilarczyk A.Clinical aspects of Emery-Dreifuss muscular dystrophy[J]. Nucleus, 2018, 9:268-274.
    [15] Malfatti E, Olivé M, Taratuto AL, et al. Skeletal Muscle Biopsy Analysis in Reducing Body Myopathy and Other FHL1-Related Disorders[J]. J Neuropathol Exp Neurol, 2013, 72:833-845. doi:  10.1097/NEN.0b013e3182a23506
    [16] Schessl J, Taratuto AL, Sewry C, et al. Clinical, histolo-gical and genetic characterization of reducing body myopathy caused by mutations in FHL1[J]. Brain, 2009, 132:452-464. doi:  10.1093/brain/awn325
    [17] Jokela M, Huovinen S, Palmio J, et al. Gluteus maximus hypertrophy-a diagnostic clue in four and a half lim domain 1-mutated reducing body myopathy[J]. Neuromuscul Disord, 2017, 27:962-963. doi:  10.1016/j.nmd.2017.06.014
    [18] Chen DH, Raskind WH, Parson WW, et al. A novel mutation in FHL1 in a family with X-linked scapuloperoneal myopathy: phenotypic spectrum and structural study of FHL1 mutations[J]. J Neurol Sci, 2010, 296:22-29. doi:  10.1016/j.jns.2010.06.017
    [19] Binder JS, Weidemann F, Schoser B, et al. Spongious hypertrophic cardiomyopathy in patients with mutations in the four-and-a-half-LIM domain 1 gene[J]. Circ Cardiovasc Gene, 2012, 5:490-502. doi:  10.1161/CIRCGENETICS.111.962332
    [20] Feldkirchner S, Walter MC, Müller S, et al. Proteomic characterization of aggregate components in an intrafamilial variable FHL1-associated myopathy[J]. Neuromuscul Disord, 2013, 23:418-426. doi:  10.1016/j.nmd.2013.02.006
    [21] San Román I, Navarro M, Martínez F, et al. Unclassifiable arrhythmic cardiomyopathy associated with Emery-Dreifuss caused by a mutation in FHL1[J]. Clin Genet, 2016, 90:171-176. doi:  10.1111/cge.12760
    [22] Park YE, Kim DS, Shin JH.Myofibrillar myopathy caused by a novel FHL1 mutation presenting a mild myopathy with ankle contracture[J]. Clin Neurol Neurosurg, 2019, 180:48-51. doi:  10.1016/j.clineuro.2019.03.015
    [23] Saini AG, Padmanabha H, Kumar S, et al. SEPN1-related Rigid Spine Muscular Dystrophy[J]. Indian J Pediatr, 2018, 85:1033-1034. doi:  10.1007/s12098-018-2713-1
    [24] Ziyaee F, Shorafa E, Dastsooz H. A novel mutation in SEPN1 causing rigid spine muscular dystrophy 1: a Case report[J]. BMC Med Genet, 2019, 20:13.
    [25] Scoto M, Cirak S, Mein R, et al. SEPN1-related myopa-thies: clinical course in a large cohort of patients[J]. Neurology, 2011, 76:2073-2078. doi:  10.1212/WNL.0b013e31821f467c
    [26] Caggiano S, Khirani S, Dabaj I, et al. Diaphragmatic dysfunction in SEPN1-related myopathy[J]. Neuromuscul Disord, 2017, 27:747-755. doi:  10.1016/j.nmd.2017.04.010
    [27] Varone E, Pozzer D, Di Modica S, et al. SELENON (SEPN1) protects skeletal muscle from saturated fatty acid-induced ER stress and insulin resistance[J]. Redox Biol, 2019, 24:101176. doi:  10.1016/j.redox.2019.101176
  • 加载中
计量
  • 文章访问数:  739
  • HTML全文浏览量:  337
  • PDF下载量:  27
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-08
  • 录用日期:  2020-06-22
  • 刊出日期:  2021-01-30

目录

    /

    返回文章
    返回