留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

光声成像在关节炎性病变中的潜在临床应用价值

赵辰阳 朱庆莉 张睿 齐振红 杨萌 姜玉新

赵辰阳, 朱庆莉, 张睿, 齐振红, 杨萌, 姜玉新. 光声成像在关节炎性病变中的潜在临床应用价值[J]. 协和医学杂志, 2021, 12(2): 232-237. doi: 10.12290/xhyxzz.20190139
引用本文: 赵辰阳, 朱庆莉, 张睿, 齐振红, 杨萌, 姜玉新. 光声成像在关节炎性病变中的潜在临床应用价值[J]. 协和医学杂志, 2021, 12(2): 232-237. doi: 10.12290/xhyxzz.20190139
ZHAO Chen-yang, ZHU Qing-li, ZHANG Rui, QI Zhen-hong, YANG Meng, JIANG Yu-xin. The Potential Value of Photoacoustic Imaging in the Assessment of Inflammatory Changes of Joints[J]. Medical Journal of Peking Union Medical College Hospital, 2021, 12(2): 232-237. doi: 10.12290/xhyxzz.20190139
Citation: ZHAO Chen-yang, ZHU Qing-li, ZHANG Rui, QI Zhen-hong, YANG Meng, JIANG Yu-xin. The Potential Value of Photoacoustic Imaging in the Assessment of Inflammatory Changes of Joints[J]. Medical Journal of Peking Union Medical College Hospital, 2021, 12(2): 232-237. doi: 10.12290/xhyxzz.20190139

光声成像在关节炎性病变中的潜在临床应用价值

doi: 10.12290/xhyxzz.20190139
基金项目: 

国家自然科学基金面上项目 61971447

国家自然科学青年基金 81301268

科技部科技合作专项基金 2015DFA30440

北京市自然科学基金 JQ18023

北京市科技新星计划项目 Z131108000413063

北京市科技新星交叉合作计划项目 xxjc201812

详细信息
    通讯作者:

    杨萌  电话:010-69155494, E-mail: yangmeng@pumch.cn

  • 中图分类号: R445.1; R684.3

The Potential Value of Photoacoustic Imaging in the Assessment of Inflammatory Changes of Joints

Funds: 

National Natural Science Foundation of China 61971447

Youth Program of National Natural Science Foundation of China 81301268

S & T Cooperation Program of China 2015DFA30440

Beijing Natural Science Foundation JQ18023

Beijing Nova Program Z131108000413063

Beijing Nova Program Interdisciplinary Cooperation Project xxjc201812

More Information
  • 摘要: 关节炎性疾病发病率逐年升高,给社会经济造成了巨大负担,其早期诊治具有重要意义。光声成像是一种新型光学影像技术,结合了光显像和超声波接收转换的优点,可对关节开展形态学、微血管及功能成像,并可通过外源性造影剂实现分子成像。近10年来,研究人员开发了一系列光声成像仪器,包括独立光声断层成像系统、多模态影像系统等,针对关节炎性疾病开展了动物实验和人体试验,证实其在关节炎性疾病诊断中的价值,其中配备手持光声探头的一体化双模态光声/超声成像系统易于临床转化,有较好的发展前景。
    作者贡献:赵辰阳负责文献检索、文章撰写及修订;杨萌、朱庆莉、齐振红、姜玉新负责文章修订;张睿负责文献检索及文章修订。
    利益冲突:  无
  • 表  1  光声计算机断层成像相关研究结果

    超声传感器模式 仪器 实/试验模型 年份
    超声探头环形旋转[15-17] 3D PACT 小鼠、关节炎小鼠、人体手指 2006
    2007
    2008
    超声探头环形旋转[18-19] 3D PACT 手指模型、人体手指 2009
    环形超声传感器列阵[21] SD PACT 人体手指 2011
    半环形超声传感器列阵[22] 3D PACT 人体手指 2014
    弓形超声传感器列阵[23] 3D PACT 人体手指 2012
    PACT:光声计算机断层成像
    下载: 导出CSV

    表  2  双模态PA/US成像系统相关研究

    仪器 研究结果 年份
    PACT/USCT[24] 多波长显示人体手指关节内结构 2016
    PACT/USCT[25] 人体手指关节结构及微血管显像 2017
    PA系统+具备L10-5探头商用超声仪器[26-28] 关节炎小鼠踝关节治疗前后光声信号变化; 人体手指关节结构及微血管显像 2011
    2012
    2013
    具备手持光声探头PA/US成像[30-31] 健康人、关节炎患者手指关节结构及微血管显像 2014
    2017
    具备手持光声探头PA/US成像[33] 关节炎患者手指微血管显像、双波长血氧饱和度测定 2017
    PACT/USCT:光声计算机断层成像/超声计算机断层成像;PA:光声;PA/US:光声/超声成像
    下载: 导出CSV
  • [1] Minichiello E, Semerano L, Boissier MC. Time trends in the incidence, prevalence, and severity of rheumatoid arthritis: A systematic literature review[J]. Joint Bone Spine, 2016, 83: 625-630. doi:  10.1016/j.jbspin.2016.07.007
    [2] Prieto-Alhambra D, Judge A, Javaid MK, et al. Incidence and risk factors for clinically diagnosed knee, hip and hand osteoarthritis: influences of age, gender and osteoarthritis affecting other joints[J]. Ann Rheum Dis, 2014, 73: 1659-1664. doi:  10.1136/annrheumdis-2013-203355
    [3] Smolen JS, Breedveld FC, Burmester GR, et al. Treating rheumatoid arthritis to target: 2014 update of the recommendations of an international task force[J]. Ann Rheum Dis, 2016, 75: 3-15. doi:  10.1136/annrheumdis-2015-207524
    [4] Arnett FC, Edworthy SM, Bloch DA et al. The American Rheumatism Association 1987 revised criteria for the classification of rheumatoid arthritis[J]. Arthritis Rheum, 1988, 31: 315-324. doi:  10.1002/art.1780310302
    [5] Østergaard M, Boesen M. Imaging in rheumatoid arthritis: the role of magnetic resonance imaging and computed tomography[J]. Radiol Med, 2019, 124: 1128-1141. https://www.cnki.com.cn/Article/CJFDTOTAL-NYGU201312037.htm
    [6] Ciurtin C, Jones A, Brown G, et al. Real benefits of ultrasound evaluation of hand and foot synovitis for better characterisation of the disease activity in rheumatoid arthritis[J]. Eur Radiol, 2019, 29: 6345-6354. doi:  10.1007/s00330-019-06187-8
    [7] Zhao CY, Jiang YX, Li JC, et al. Role of Contrast-enhanced Ultrasound in the Evaluation of Inflammatory Arthritis[J]. Chin Med J (Engl), 2017, 130: 1722-1730. doi:  10.4103/0366-6999.209885
    [8] Chamberland D, Jiang YB, Wang XD. Optical imaging: new tools for arthritis[J]. Integr Biol (Camb), 2010, 2: 496-509. doi:  10.1039/b926506f
    [9] Zhao CY, Xiao MS, Jiang YX, et al. Feasibility of computer-assisted diagnosis for breast ultrasound: the results of the diagnostic performance of S-detect from a single center in China[J]. Cancer Manag Res, 2019, 11: 921-930. doi:  10.2147/CMAR.S190966
    [10] Attia ABE, Balasundaram G, Moothanchery M, et al. A review of clinical photoacoustic imaging: Current and future trends[J]. Photoacoustics, 2019, 16: 100144. doi:  10.1016/j.pacs.2019.100144
    [11] Wang LV, Gao L. Photoacoustic microscopy and computed tomography: from bench to bedside[J]. Annu Rev Biomed Eng, 2014, 16: 155-185. doi:  10.1146/annurev-bioeng-071813-104553
    [12] Xia J, Yao JJ, Wang LV. Photoacoustic tomography: principles and advances[J]. Electromagn Waves (Camb), 2014, 147: 1-22. doi:  10.2528/PIER14032303
    [13] Wang S, Lin J, Wang TF, et al. Recent Advances in Photoacoustic Imaging for Deep-Tissue Biomedical Applications[J]. Theranostics, 2016, 6: 2394-2413. doi:  10.7150/thno.16715
    [14] Yu J, Nguyen HNY, Steenbergen W, et al. Recent Development of Technology and Application of Photoacoustic Molecular Imaging Toward Clinical Translation[J]. J Nucl Med, 2018, 59: 1202-1207. doi:  10.2967/jnumed.117.201459
    [15] Wang X, Chamberland DL, Carson PL, et al. Imaging of joints with laser-based photoacoustic tomography: an animal study[J]. Med Phys, 2006, 33: 2691-2697. doi:  10.1118/1.2214166
    [16] Wang X, Chamberland DL, Jamadar DA. Noninvasive photoacoustic tomography of human peripheral joints toward diagnosis of inflammatory arthritis[J]. Opt Lett, 2007, 32: 3002-3004. doi:  10.1364/OL.32.003002
    [17] Chamberland DL, Wang X, Roessler BJ. Photoacoustic tomography of carrageenan-induced arthritis in a rat model[J]. J Biomed Opt, 2008, 13: 011005. doi:  10.1117/1.2841028
    [18] Sun Y, Jiang HB. Quantitative three-dimensional photoacoustic tomography of the finger joints: phantom studies in a spherical scanning geometry[J]. Phys Med Biol, 2009, 54: 5457-5467. doi:  10.1088/0031-9155/54/18/007
    [19] Sun Y, Sobel E, Jiang HB. Quantitative three-dimensional photoacoustic tomography of the finger joints: an in vivo study[J]. J Biomed Opt, 2009, 14: 064002. doi:  10.1117/1.3257246
    [20] Yuan Z, Jiang HB. Three-dimensional finite-element-based photoacoustic tomography: Reconstruction algorithm and simulations[J]. Med Phys, 2007, 34: 538-546. doi:  10.1118/1.2409234
    [21] Sun Y, Sobel ES, Jiang HB. First assessment of three-dimensional quantitative photoacoustic tomography for in vivo detection of osteoarthritis in the finger joints[J]. Med Phys, 2011, 38: 4009-4017. doi:  10.1118/1.3598113
    [22] van Es P, Biswas SK, Bernelot Moens HJ, et al. Initial results of finger imaging using photoacoustic computed tomography[J]. J Biomed Opt, 2014, 19: 060501. doi:  10.1117/1.JBO.19.6.060501
    [23] Ermilov S, Su R, Zamora M, et al. Optoacoustic angiography of peripheral vasculature[J]. Proc Spie, 2012, 8223: 8. doi:  10.1117/12.911629
    [24] Liu YB, Wang YT, Yuan Z. Dual-Modality Imaging of the Human Finger Joint Systems by Using Combined Multispectral Photoacoustic Computed Tomography and Ultrasound Computed Tomography[J]. Biomed Res Int, 2016, 2016: 1453272. http://www.ncbi.nlm.nih.gov/pubmed/27774453
    [25] Oeri M, Bost W, Sénégond N, et al. Hybrid Photoacoustic/Ultrasound Tomograph for Real-Time Finger Imaging[J]. Ultrasound Med Biol, 2017, 43: 2200-2212. doi:  10.1016/j.ultrasmedbio.2017.05.015
    [26] Wang XD, Fowlkes JB, Cannata JM, et al. Photoacoustic imaging with a commercial ultrasound system and a custom probe[J]. Ultrasound Med Biol, 2017, 37: 484-492. http://europepmc.org/articles/PMC3040410
    [27] Rajian JR, Girish G, Wang XD. Photoacoustic tomography to identify inflammatory arthritis[J]. J Biomed Opt, 2012, 17: 96013-96021 http://europepmc.org/abstract/med/23085914
    [28] Rajian JR, Shao X, Chamberland DL, et al. Characteriza-tion and treatment monitoring of inflammatory arthritis by photoacoustic imaging: a study on adjuvant-induced arthritis rat model[J]. Biomed Opt Express, 2013, 4: 900-908. doi:  10.1364/BOE.4.000900
    [29] Xu G, Rajian JR, Girish G, et al. Photoacoustic and ultrasound dual-modality imaging of human peripheral joints[J]. J Biomed Opt, 2013, 18: 10502. http://pubmedcentralcanada.ca/pmcc/articles/PMC3520078/
    [30] Daoudi K, van den Berg PJ, Rabot O, et al. Handheld probe integrating laser diode and ultrasound transducer array for ultrasound/photoacoustic dual modality imaging[J]. Opt Express, 2014, 22: 26365-26374. doi:  10.1364/OE.22.026365
    [31] van den Berg PJ, Daoudi K, Bernelot Moens HJ, et al. Feasibility of photoacoustic/ultrasound imaging of synovitis in finger joints using a point-of-care system[J]. Photoacoustics, 2017, 8: 8-14 doi:  10.1016/j.pacs.2017.08.002
    [32] Yuan J, Xu G, Yu Y, et al. Real-time photoacoustic and ultrasound dual-modality imaging system facilitated with graphics processing unit and code parallel optimization[J]. J Biomed Opt, 2013, 18: 86001. http://www.ncbi.nlm.nih.gov/pubmed/23907277?dopt=Abstract
    [33] Jo J, Xu G, Cao M, et al. A Functional Study of Human Inflammatory Arthritis Using Photoacoustic Imaging[J]. Sci Rep, 2017, 7: 15026. doi:  10.1038/s41598-017-15147-5
    [34] Zhu YH, Xu G, Yuan J, et al. Light Emitting Diodes based Photoacoustic Imaging and Potential Clinical Applications[J]. Sci Rep, 2018, 8: 9885. doi:  10.1038/s41598-018-28131-4
    [35] Yang M, Zhao LY, He XJ, et al. Photoacoustic/ultrasound dual imaging of human thyroid cancers: an initial clinical study[J]. Biomed Opt Express, 2017, 8: 3449-3457. doi:  10.1364/BOE.8.003449
    [36] Xi L, Jiang HB. Integrated photoacoustic and diffuse optical tomography system for imaging of human finger joints in vivo[J]. J Biophotonics, 2016, 9: 213-217. doi:  10.1002/jbio.201500197
    [37] Chamberland DL, Agarwal A, Kotov N, et al. Photoacoustic tomography of joints aided by an Etanercept-conjugated gold nanoparticle contrast agent-an ex vivo preliminary rat study[J]. Nanotechnology, 2008, 19: 095101. doi:  10.1088/0957-4484/19/9/095101
    [38] Ray A, Yoon HK, Koo Lee YE, et al. Sonophoric nanoprobe aided pH measurement in vivo using photoacoustic spectroscopy[J]. Analyst, 2013, 138: 3126-3130. doi:  10.1039/c3an00093a
    [39] Beziere N, von Schacky C, Kosanke Y, et al. Optoacoustic imaging and staging of inflammation in a murine model of arthritis[J]. Arthritis Rheumatol, 2014, 66: 2071-2078. doi:  10.1002/art.38642
    [40] Keswani RK, Tian C, Peryea T, et al. Repositioning Clofazimine as a Macrophage-Targeting Photoacoustic Contrast Agent[J]. Sci Rep, 2016, 6: 23528. doi:  10.1038/srep23528
    [41] Ukai T, Sato M, Ishihara M, et al. Usefulness of using laser-induced photoacoustic measurement and 3.0 Tesla MRI to assess knee cartilage damage: a comparison study[J]. Arthritis Res Ther, 2015, 17: 383. doi:  10.1186/s13075-015-0899-4
    [42] Biswas SK, van Es P, Steenbergen W, et al. A Method for Delineation of Bone Surfaces in Photoacoustic Computed Tomography of the Finger[J]. Ultrason Imaging, 2016, 38: 63-76. doi:  10.1177/0161734615589288
  • 加载中
表(2)
计量
  • 文章访问数:  31
  • HTML全文浏览量:  5
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-07-15
  • 录用日期:  2019-12-13
  • 网络出版日期:  2019-12-16
  • 刊出日期:  2021-05-30

目录

    /

    返回文章
    返回