Yuan XIA, Xiang-pei LI. The Role of MicroRNA Regulation of Interferon-α in the Pathogenesis of Systemic Lupus Erythematosus[J]. Medical Journal of Peking Union Medical College Hospital, 2019, 10(6): 673-678. doi: 10.3969/j.issn.1674-9081.2019.06.021
Citation: Yuan XIA, Xiang-pei LI. The Role of MicroRNA Regulation of Interferon-α in the Pathogenesis of Systemic Lupus Erythematosus[J]. Medical Journal of Peking Union Medical College Hospital, 2019, 10(6): 673-678. doi: 10.3969/j.issn.1674-9081.2019.06.021

The Role of MicroRNA Regulation of Interferon-α in the Pathogenesis of Systemic Lupus Erythematosus

doi: 10.3969/j.issn.1674-9081.2019.06.021
More Information
  • Corresponding author: LI Xiang-pei Tel: 86-551-62284333, E-mail:lixiangpei55@126.com
  • Received Date: 2017-07-18
  • Publish Date: 2019-11-30
  • Systemic lupus erythematosus is a multi-systemic autoimmune disease. Interferon-α is a key factor in the systemic lupus erythematosus immune disorder. The mechanism of action and signaling pathways further reveal the pathogenesis of systemic lupus erythematosus and provide a new strategy for the clinical treatment of the disease. Recent studies have found that microRNA plays an important role in the pathogenesis of systemic lupus erythematosus, and abnormal microRNA expression is involved in the regulation of type Ⅰ interferon pathway. This article reviews the regulation of microRNAs on the type Ⅰ interferon pathway and its role in the pathogenesis of systemic lupus erythematosus, which is of great significance for further understanding the pathogenesis of systemic lupus erythematosus.
  • loading
  • [1] Luo S, Wang Y, Zhao M, et al. The important roles of type Ⅰ interferon and interferon-inducible genes in systemic lupus erythematosus[J]. Int Immunopharmacol, 2016, 40:542-549. http://www.sciencedirect.com/science/article/pii/S1567576916304179
    [2] Forster SC, Tate MD, Hertzog PJ. MicroRNA as Type Ⅰ Interferon-Regulated Transcripts and Modulators of the Innate Immune Response[J]. Front Immunol, 2015, 6:334. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4495342/
    [3] Hoffmann HH, Schneider WM, Rice CM. Interferons and viruses:an evolutionary arms race of molecular interactions[J]. Trends Immunol, 2015, 36:124-138. http://pubmedcentralcanada.ca/pmcc/articles/PMC4384471/
    [4] Mathian A, Hie M, Cohen-Aubart F, et al. Targeting interferons in systemic lupus erythematosus:current and future prospects[J]. Drugs, 2015, 75:835-846. http://smartsearch.nstl.gov.cn/paper_detail.html?id=b9c92724337b8d50c01cfafb59927bfd
    [5] Mukherjee B, Paul J, Mukherjee S, et al. Antimony-Resistant Leishmania Donovani Exploits miR-466i to Deactivate Host MyD88 for Regulating IL-10/IL-12 Levels during Early Hours of Infection[J]. J Immunol, 2015, 195:2731-2742. http://www.ncbi.nlm.nih.gov/pubmed/26283478
    [6] Rossato M, Affandi AJ, Thordardottir S, et al. Association of MicroRNA-618 Expression With Altered Frequency and Activation of Plasmacytoid Dendritic Cells in Patients With Systemic Sclerosis[J]. Arthritis Rheumatol, 2017, 69:1891-1902. http://europepmc.org/abstract/MED/28556560
    [7] Liu F, Liu C, Hu X, et al. MicroRNA-21:A Positive Regulator for Optimal Production of Type Ⅰ and TypeⅢ Interferon by Plasmacytoid Dendritic Cells[J]. Front Immunol, 2017, 8:947. http://europepmc.org/abstract/MED/28871250
    [8] Liu YJ, Fan WJ, Bai JZ. microRNA-126 expression and its mechanism of action in patients with systemic lupus erythematosus[J]. Eur Rev Med Pharmacol Sci, 2015, 19:3838-3842. http://www.ncbi.nlm.nih.gov/pubmed/26531267
    [9] Tang Y, Luo X, Cui H, et al. MicroRNA-146A contributes to abnormal activation of the type Ⅰ interferon pathway in human lupus by targeting the key signaling proteins[J]. Arthritis Rheum, 2009, 60:1065-1075. doi:  10.1002/art.24436/full
    [10] Papadopoulou AS, Dooley J, Linterman MA, et al. The thymic epithelial microRNA network elevates the threshold for infection-associated thymic involution via miR-29a mediated suppression of the IFN-alpha receptor[J]. Nat Immunol, 2011, 13:181-187. http://europepmc.org/articles/PMC3647613
    [11] Buie JJ, Renaud LL, Muise-Helmericks R, et al. IFN-alpha Negatively Regulates the Expression of Endothelial Nitric Oxide Synthase and Nitric Oxide Production:Implications for Systemic Lupus Erythematosus[J]. J Immunol, 2017, 199:1979-1988.
    [12] Olferiev M, Jacek E, Kirou KA, et al. Novel molecular signatures in mononuclear cell populations from patients with systemic lupus erythematosus[J]. Clin Immunol, 2016, 172:34-43. http://europepmc.org/abstract/MED/27576056
    [13] Chiche L, Jourde-Chiche N, Whalen E, et al. Modular transcriptional repertoire analyses of adults with systemic lupus erythematosus reveal distinct type Ⅰ and type Ⅱ interferon signatures[J]. Arthritis Rheumatol, 2014, 66:1583-1595. http://www.ncbi.nlm.nih.gov/pubmed/24644022
    [14] Khamashta M, Merrill JT, Werth VP, et al. Sifalimumab, an anti-interferon-alpha monoclonal antibody, in moderate to severe systemic lupus erythematosus:a randomised, double-blind, placebo-controlled study[J]. Ann Rheum Dis, 2016, 75:1909-1916.
    [15] Kalunian KC, Merrill JT, Maciuca R, et al. A Phase Ⅱ study of the efficacy and safety of rontalizumab (rhuMAb interferon-alpha) in patients with systemic lupus erythematosus (ROSE)[J]. Ann Rheum Dis, 2016, 75:196-202. http://ard.bmj.com/content/75/1/196
    [16] Furie R, Khamashta M, Merrill JT, et al. Anifrolumab, an Anti-Interferon-alpha Receptor Monoclonal Antibody, in Moderate-to-Severe Systemic Lupus Erythematosus[J]. Arthritis Rheumatol, 2017, 69:376-386.
    [17] Weidenbusch M, Kulkarni OP, Anders HJ. The innate immune system in human systemic lupus erythematosus[J]. Clin Sci (Lond), 2017, 131:625-634. http://europepmc.org/abstract/MED/28351959
    [18] Lopez P, Rodriguez-Carrio J, Caminal-Montero L, et al. A pathogenic IFN alpha, BLyS and IL-17 axis in systemic lupus erythematosus patients[J]. Sci Rep, 2016, 6:20651. http://pubmedcentralcanada.ca/pmcc/articles/PMC4742957/
    [19] Yan S, Yim LY, Lu L, et al. MicroRNA Regulation in Systemic Lupus Erythematosus Pathogenesis[J]. Immune Netw, 2014, 14:138-148. http://www.ncbi.nlm.nih.gov/pubmed/24999310
    [20] Le X, Yu X, Shen N. Novel insights of microRNAs in the development of systemic lupus erythematosus[J]. Curr Opin Rheumatol, 2017, 29:450-457. http://europepmc.org/abstract/MED/28570283
    [21] Wang Z, Chang C, Peng M, et al. Translating epigenetics into clinic:focus on lupus[J]. Clin Epigenetics, 2017, 9:78. http://europepmc.org/abstract/MED/28785369
    [22] Husakova M. MicroRNAs in the key events of systemic lupus erythematosus pathogenesis[J]. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub, 2016, 160:327-342. http://www.ncbi.nlm.nih.gov/pubmed/27003314
    [23] Tang Y, Luo X, Cui H, et al. MicroRNA-146A contributes to abnormal activation of the type Ⅰ interferon pathway in human lupus by targeting the key signaling proteins[J]. Arthritis Rheum, 2009, 60:1065-1075. doi:  10.1002/art.24436/full
    [24] Xu WD, Lu MM, Pan HF, et al. Association of MicroRNA-146a with autoimmune diseases[J]. Inflammation, 2012, 35:1525-1529. http://onlinelibrary.wiley.com/resolve/reference/XREF?id=10.1007/s10753-012-9467-0
    [25] Taganov KD, Boldin MP, Chang KJ, et al. NF-kappaB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses[J]. Proc Natl Acad Sci U S A, 2006, 103:12481-12486. http://abbs.oxfordjournals.org/lookup/ijlink?linkType=ABST&journalCode=pnas&resid=103/33/12481
    [26] Boldin MP, Taganov KD, Rao DS, et al. miR-146a is a significant brake on autoimmunity, myeloproliferation, and cancer in mice[J]. J Exp Med, 2011, 208:1189-1201. http://europepmc.org/abstract/MED/21555486
    [27] Qu B, Cao J, Zhang F, et al. Type Ⅰ Interferon Inhibition of MicroRNA-146a Maturation Through Up-Regulation of Monocyte Chemotactic Protein-Induced Protein 1 in Systemic Lupus Erythematosus[J]. Arthritis Rheumatol, 2015, 67:3209-3218. doi:  10.1002/art.39398/pdf
    [28] Dominguez-Gutierrez PR, Ceribelli A, Satoh M, et al. Positive correlation of STAT1 and miR-146a with anemia in patients with systemic lupus erythematosus[J]. J Clin Immunol, 2014, 34:171-180. http://europepmc.org/abstract/med/24292724
    [29] Smith S, Fernando T, Wu PW, et al. MicroRNA-302d targets IRF9 to regulate the IFN-induced gene expression in SLE[J]. J Autoimmun, 2017, 79:105-111. http://www.ncbi.nlm.nih.gov/pubmed/28318807
    [30] Sarhan RA, Aboelenein HR, Sourour SK, et al. Targeting E2F1 and c-Myc expression by microRNA-17-5p represses interferon-stimulated gene MxA in peripheral blood mononuclear cells of pediatric systemic lupus erythematosus patients[J]. Discov Med, 2015, 19:419-425
    [31] Cheng J, Wu R, Long L, et al. miRNA-451a Targets IFN Regulatory Factor 8 for the Progression of Systemic Lupus Erythematosus[J]. Inflammation, 2017, 40:676-687. doi:  10.1007/s10753-017-0514-8
    [32] Liu YJ, Fan WJ, Bai JZ. microRNA-126 expression and its mechanism of action in patients with systemic lupus erythematosus[J]. Eur Rev Med Pharmacol Sci, 2015, 19:3838-3842. http://www.ncbi.nlm.nih.gov/pubmed/26531267
    [33] Kaga H, Komatsuda A, Omokawa A, et al. Downregulated expression of miR-155, miR-17, and miR-181b, and upregulated expression of activation-induced cytidine deaminase and interferon-alpha in PBMCs from patients with SLE[J]. Mod Rheumatol, 2015, 25:865-870. http://www.ncbi.nlm.nih.gov/pubmed/25775145
    [34] Han X, Wang Y, Zhang X, et al. MicroRNA-130b Ameliorates Murine Lupus Nephritis Through Targeting the Type Ⅰ Interferon Pathway on Renal Mesangial Cells[J]. Arthritis Rheumatol, 2016, 68:2232-2243.
    [35] Dong G, Fan H, Yang Y, et al. 17beta-Estradiol enhances the activation of IFN-alpha signaling in B cells by down-regulating the expression of let-7e-5p, miR-98-5p and miR-145a-5p that target IKKepsilon[J]. Biochim Biophys Acta, 2015, 1852:1585-1598. http://smartsearch.nstl.gov.cn/paper_detail.html?id=cb6b3f966bccc942a2da59b4b2cfb58c
    [36] Wu YW, Tang W, Zuo JP. Toll-like receptors:potential targets for lupus treatment[J]. Acta Pharmacol Sin, 2015, 36:1395-1407. http://pubmedcentralcanada.ca/pmcc/articles/PMC4816237/
    [37] Pan Y, Jia T, Zhang Y, et al. MS2 VLP-based delivery of microRNA-146a inhibits autoantibody production in lupus-prone mice[J]. Int J Nanomedicine, 2012, 7:5957-5967. http://europepmc.org/articles/PMC3518289
    [38] Leiss H, Salzberger W, Jacobs B, et al. MicroRNA 155-deficiency leads to decreased autoantibody levels and reduced severity of nephritis and pneumonitis in pristane-induced lupus[J]. PLoS One, 2017, 12:e0181015. http://europepmc.org/abstract/MED/28719617
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (380) PDF downloads(218) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return