Guang-yan XU, Li XU. Application of Intraoperative Goal-directed Fluid Therapy in Enhanced Recovery after Surgery[J]. Medical Journal of Peking Union Medical College Hospital, 2018, 9(6): 550-555. doi: 10.3969/j.issn.1674-9081.2018.06.012
Citation: Guang-yan XU, Li XU. Application of Intraoperative Goal-directed Fluid Therapy in Enhanced Recovery after Surgery[J]. Medical Journal of Peking Union Medical College Hospital, 2018, 9(6): 550-555. doi: 10.3969/j.issn.1674-9081.2018.06.012

Application of Intraoperative Goal-directed Fluid Therapy in Enhanced Recovery after Surgery

doi: 10.3969/j.issn.1674-9081.2018.06.012
More Information
  • Corresponding author: XU Li  Tel: 010-69152020, E-mail: pumchxuli@163.com
  • Received Date: 2018-06-12
  • Publish Date: 2018-11-30
  • Goal-directed fluid therapy (GDT), as an important part of enhanced recovery after surgery (ERAS), is of great concern in accelerating the recovery and improving the prognosis after major surgery. Based on existing reports, we summarized some monitoring methods, observation indexes, and liquid selections commonly used in clinical practice, and discussed the application and effects of GDT of ERAS in gastrointestinal surgery, thoracic surgery, liver surgery, head and neck carcinoma surgery. The result showed that GDT had significant advantages for fluid management in major surgery, including decreasing overall complication rate, reducing hospital stays, accelerating recovery, and improving prognosis.
  • loading
  • [1] Carli F, Baldini G. Fast-track surgery:it is time for the anesthesiologist to get involved[J]. Minerva Anesth, 2011, 77:227-230. http://www.ncbi.nlm.nih.gov/pubmed/21368729
    [2] Hamilton M, Cecconi M, Rhodes A. A systematic review and meta-analysis on the use of preemptive hemodynamic intervention to improve postoperative outcomes in moderate and high-risk surgical patients[J]. Anesth Analg, 2011, 112:1392-1402. http://eurheartj.oxfordjournals.org/lookup/external-ref?access_num=20966436&link_type=MED&atom=%2Fehj%2Fearly%2F2014%2F07%2F28%2Feurheartj.ehu282.atom
    [3] McGee WT, Raghunathan K. Physiologic Goal-Directed Therapy in the Perioperative Period:The Volume Prescription for High-Risk Patients[J]. Cardiothorac Vasc Anesth, 2013, 27:1079-1086. doi:  10.1053/j.jvca.2013.04.019
    [4] Rhodes A, Cecconi M, Hamilton M, et al. Goal-directed therapy in high-risk surgical patients:A 15-year follow-up study[J]. Intensive Care Med, 2010, 36:1327-1332. doi:  10.1007/s00134-010-1869-6
    [5] Miller TE, Roche AM, Mythen M. Fluid management and goal-directed therapy as an adjunct to enhanced recovery after surgery[J]. Can Anesth, 2015, 62:158-168. doi:  10.1007/s12630-014-0266-y
    [6] Cannesson M, Pestel G, Ricks C, et al. Hemodynamic monitoring and management in patients undergoing high-risk surgery:A survey among North American and European anesthesiologists[J]. Crit Care, 2011, 15:197-207. doi:  10.1186/cc10416
    [7] Phan TD, Ismail H, Heriot AG, et al. Improving periopera-tive outcomes:fluid optimization with the esophageal Doppler monitor, a meta-analysis and review[J]. Am Coll Surg, 2008, 207:935-941. doi:  10.1016/j.jamcollsurg.2008.08.007
    [8] Wetterslev M, Moller-Sorensen H, Johansen RR, et al. Systematic review of cardiac output measurements by echocardiography vs. thermodilution:the techniques are not interchangeable[J]. Intensive Care Med, 2016, 42:1223-1233. doi:  10.1007/s00134-016-4258-y
    [9] Mercado P, Maizel J, Beyls C, et al. Transthoracic echocardiography:an accurate and precise method for estimating cardiac output in the critically ill patient[J]. Crit Care, 2017, 21:136-143. doi:  10.1186/s13054-017-1737-7
    [10] Teboul JL, Saugel B, Cecconi M, et al. Less invasive hemodynamic monitoring in critically ill patients[J]. Intensive Care Med, 2016, 42:1350-1359. doi:  10.1007/s00134-016-4375-7
    [11] Backer DD, Bakker J, Cecconi M, et al. Alternatives to the Swan-Ganz catheter[J]. Intensive Care Med, 2018, 44:1-12. doi:  10.1007/s00134-017-5005-8
    [12] Tagami T, Kushimoto S, Tosa R, et al. The precision of PiCCO® measurements in hypothermic post-cardiac arrest patients[J]. Anaesthesia, 2012, 67:236-243. doi:  10.1111/j.1365-2044.2011.06981.x
    [13] Hofer CK, Ganter MT, Klaghofer R, et al. Volumetric assessment of left heart preload by thermodilution:comparing the PiCCO-VoLEF® system with transoesophageal echocardiography[J]. Anaesthesia, 2006, 61:316-321. doi:  10.1111/j.1365-2044.2006.04537.x
    [14] Schlöglhofer T, Gilly H, Schima H. Semi-invasive measurement of cardiac output based on pulse contour:a review and analysis[J]. Can Anesth, 2014, 61:452-479. doi:  10.1007/s12630-014-0135-8
    [15] Michard F. Changes in arterial pressure during mechanical ventilation[J]. Anesthesiology, 2005, 103:419-428. doi:  10.1097/00000542-200508000-00026
    [16] Reuter DA, Bayerlein J, Goepfert MS, et al. Influence of tidal volume on left ventricular stroke volume variation measured by pulse contour analysis in mechanically ventilated patients[J]. Intensive Care Med, 2003, 29:476-480. doi:  10.1007/s00134-003-1649-7
    [17] Sundar S, Panzica P. LiDCO systems[J]. Int Anesthesiol Clin, 2010, 48:87-100. doi:  10.1097/AIA.0b013e3181bce8c1
    [18] Marik PE, Cavallazzi R, Vasu T, et al. Dynamic changes in arterial waveform derived variables and fluid responsiveness in mechanically ventilated patients:a systematic review of the literature[J]. Crit Care Med, 2009, 37:2642-2647. doi:  10.1097/CCM.0b013e3181a590da
    [19] Zhang Z, Lu B, Sheng X, et al. Accuracy of stroke volume variation in predicting fluid responsiveness:a systematic review and meta-analysis[J]. Anesthsia, 2011, 25:904-916. doi:  10.1007/s00540-011-1217-1
    [20] Cannesson M, et al. Assessing the Diagnostic accuracy of pulse pressure variations for the prediction of fluid responsiveness:A "gray zone" approach[J]. Anesthesiology, 2011, 115:231-241. doi:  10.1097/ALN.0b013e318225b80a
    [21] MacDonald N, Le Manach Y, Hofer CK, et al. Dynamic preload markers to predict fluid responsiveness during and after major gastrointes tinal surgery:an observational substudy of the optimial trial[J]. Br J Anaesth, 2015, 114:598-604. doi:  10.1093/bja/aeu398
    [22] Shaw AD, Bagshaw SM, Goldstein SL, et al. Major complications, mortality, and resource utilization after open abdominal surgery:0.9% saline compared to Plasma-Lyte[J]. Ann Surg, 2012, 255:821-829. doi:  10.1097/SLA.0b013e31825074f5
    [23] Kimberger O, Arnberger M, Brandt S, et al. Goal-directed colloid administration improves the microcirculation of healthy and peri-anastomotic colon[J]. Anesthesiology, 2009, 110:496-504. doi:  10.1097/ALN.0b013e31819841f6
    [24] Yates DR, Davies SJ, Milner HE, et al. Crystalloid or colloid for goal-directed fluid therapy in colorectal surgery[J]. Br J Anaesth, 2014, 112:281-289. doi:  10.1093/bja/aet307
    [25] Pearse RM, Harrison DA, MacDonald N, et al. Effect of a Perioperative, Cardiac Output-Guided Hemodynamic Therapy Algorithm on Outcomes Following Major Gastrointestinal Surgery[J]. JAMA, 2014, 311:2181-2190. doi:  10.1001/jama.2014.5305
    [26] Kalyan JP, Rosbergen M, Pal N, et al. Randomized clinical trial of fluid and salt restriction compared with a controlled liberal regimen in elective gastrointestinal surgery[J]. Br J Surg, 2013, 100:1739-1746. doi:  10.1002/bjs.9301
    [27] Abraham-Nordling M, Hjern F, Pollack J, et al. Randomized clinical trial of fluid restriction in colorectal surgery[J]. Br J Surg, 2012, 99:186-191. doi:  10.1002/bjs.7702
    [28] Myles PS, Bellomo R, Corcoran T, et al. Restrictive versus Liberal Fluid Therapy for Major Abdominal Surgery[J]. N Engl J Med, 2018, 378:2263-2274. doi:  10.1056/NEJMoa1801601
    [29] Varadhan KK, Neal KR, Dejong CH, et a1.The enhanced recovery after surgery(ERAS) pathway for patients undergo-ing major elective open colorectal surgery:a meta-analysis of randomized controlled trials[J]. Clin Utr, 2010, 29:434-440. http://www.ncbi.nlm.nih.gov/pubmed/20116145
    [30] Nicholson A, Lowe MC, Parker J, et al. Systematic review and meta-anaylsis of enhanced recovery programmes in surgical patients[J]. Br J Surg, 2014, 101:172-188. doi:  10.1002/bjs.9394
    [31] Srinivasa S, Taylor MH, Singh PP, et al. Randomized clinical trial of goal-directed fluid therapy within an enhanced recovery protocol for elective colectomy[J]. Br J Surg, 2013, 100:66-74. doi:  10.1002/bjs.8940
    [32] Grant MC, Yang D, Wu CL, et al. Impact of Enhanced Recovery after Surgery and Fast Track Surgery Pathways on Healthcare-associated Infections:Results from a Systematic Review and Meta-analysis[J]. Ann Surg, 2017, 265:68-79. doi:  10.1097/SLA.0000000000001703
    [33] Moller AM, Pedersen T, Svendsen PE, et al. Perioperative risk factors in elective pneumonectomy:the impact of excess fluid balance[J]. Eur J Anaesth, 2002, 19:57-62. doi:  10.1097/00003643-200201000-00009
    [34] Eng OS, Arlow RL, Moore D, et al. Fluid administration and morbidity in transhiatal esophagectomy[J]. Surg Research, 2016, 200:91-97. doi:  10.1016/j.jss.2015.07.021
    [35] Chau EH, Slinger P. Perioperative fluid management for pulmonary resection surgery and esophagectomy[J]. Semin Cardiothorac Vasc Anesth, 2014, 18:36-44. doi:  10.1177/1089253213491014
    [36] Zhang J, Chen CQ, Lei XZ, et al. Goal-directed fluid optimization based on stroke volume variation and cardiac index during one-lung ventilation in patients undergoing thoracoscopy lobectomy operations:a pilot study[J]. Clinics, 2013, 68:1065-1070. doi:  10.6061/clinics/2013(07)27
    [37] Xu H, Shu SH, Wang D, et al. Goal-directed fluid restriction using stroke volume variation and cardiac index during one-lung ventilation:a randomized controlled trial[J]. Thorac Dis, 2017, 9:2992-3004. doi:  10.21037/jtd.2017.08.98
    [38] Zakeri R, Rao J, Edwards J, et al. Enhanced recovery after thoracic surgery:outcomes following implementation of a tailored ERAS pathway in a tertiary center[J]. Int J Surg, 2015, 23:34-35. http://icvts.oxfordjournals.org/content/21/suppl_1/S29.3.full
    [39] Rogers LJ, Bleetman D, Messenger DE, et al. The impact of enhanced recovery after surgery (ERAS) protocol compliance on morbidity from resection for primary lung cancer[J]. Thorac Cardiovasc Surg, 2018, 155:1843-1852. doi:  10.1016/j.jtcvs.2017.10.151
    [40] Ahn HJ, Kim JA, Lee AR, et al. The risk of acute kidney injury from fluid restriction and hydroxyethyl starch in thoracic surgery[J]. Anesth Analg, 2016, 122:186-193. doi:  10.1213/ANE.0000000000000974
    [41] Palavecino M, Kishi Y, Chun YS, et al. Two-surgeon technique of parenchymal transection contributes to reduced transfusion rate in patients undergoing major hepatectomy:analysis of 1, 557 consecutive liver resections[J]. Surgery, 2010, 147:40-48. doi:  10.1016/j.surg.2009.06.027
    [42] Virani S, Michaelson JS, Hutter MM, et al. Morbidity and mortality after liver resection:results of the patient safety in surgery study[J]. Am Coll Surg, 2007, 204:1284-1292. doi:  10.1016/j.jamcollsurg.2007.02.067
    [43] Jones C, Kelliher L, Dickinson M, et al. Randomized clinical trial on enhanced recovery versus standard care following open liver resection[J]. Br J Surg, 2013, 100:1015-1024. doi:  10.1002/bjs.9165
    [44] Reydellet L, Blasco V, Mercier MF, et al. Impact of a goal-directed therapy protocol on postoperative fluid balance in patients undergoing liver transplantation:a retrospective study[J]. Ann Fr Anesth Reanim, 2014, 33:47-54. doi:  10.1016/j.annfar.2013.11.015
    [45] Correa-Gallego C, Tan KS, Arslan-Carlon V, et al. Goal-Directed Fluid Therapy Using Stroke Volume Variation for Resuscitation after Low Central Venous Pressure-Assisted Liver Resection:A Randomized Clinical Trial[J]. Am Coll Surg, 2015, 221:591-601. doi:  10.1016/j.jamcollsurg.2015.03.050
    [46] Li L, Chen J, Liu Z, et al. Enhanced recovery program versus traditional care after hepatectomy:A meta-analysis[J]. Medicine, 2017, 96:8052-8058. doi:  10.1097/MD.0000000000008052
    [47] 孟改革, 方卫平, 张雷, 等.目标导向液体治疗下晶体液与胶体液输注对肝切除患者组织灌注和术后恢复的影响[J].临床麻醉学杂志, 2017, 33:557-561. doi:  10.3969/j.issn.1004-5805.2017.06.009
    [48] Stableforth WD, Thomas S, Lewis SJ. A systematic review of the role of immunonutrition in patients undergoing surgery for head and neck cancer[J]. Int Oral Maxillofac Surg, 2009, 38:103-110. doi:  10.1016/j.ijom.2008.12.008
    [49] Haughey BH, Wilson E, Kluwe L, et al. Free flap reconstruction of the head and neck:analysis of 241 cases[J]. Otolaryngol Head Neck Surg, 2001, 125:10-17. doi:  10.1067/mhn.2001.116788
    [50] Coyle MB, Hughes C, et al. Enhanced recovery after surgery (ERAS) for head and neck oncology patients[J]. Clin Otolaryngol, 2016, 41:118-126. doi:  10.1111/coa.12482
    [51] Abdel-Galil K, Craske D, McCaul J. Optimisation of intraoperative haemodynamics:early experience of its use in major head and neck surgery[J]. Br J Oral Maxillofac Surg, 2010, 48:189-191. doi:  10.1016/j.bjoms.2009.08.029
    [52] Chalmers A, Turner MW, Anand R, et al. Cardiac monitoring to guide fluid replacement in head and neck microvascular free flap surgery-what is current practice in the UK?[J]. Br J Oral Maxillofac Surg, 2012, 50:500-505. doi:  10.1016/j.bjoms.2011.08.010
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (310) PDF downloads(408) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return