He-wen TANG, Meng YANG, Yu-xin JIANG. Molecular Contrast Agents for Photoacoustic Imaging[J]. Medical Journal of Peking Union Medical College Hospital, 2018, 9(4): 358-363. doi: 10.3969/j.issn.1674-9081.2018.04.013
Citation: He-wen TANG, Meng YANG, Yu-xin JIANG. Molecular Contrast Agents for Photoacoustic Imaging[J]. Medical Journal of Peking Union Medical College Hospital, 2018, 9(4): 358-363. doi: 10.3969/j.issn.1674-9081.2018.04.013

Molecular Contrast Agents for Photoacoustic Imaging

doi: 10.3969/j.issn.1674-9081.2018.04.013
More Information
  • Corresponding author: JIANG Yu-xin Tel:010-69155491, E-mail:jiangyuxinxh@163.com
  • Received Date: 2017-04-23
  • Publish Date: 2018-07-30
  • Photoacoustic imaging, based on photoacoustic effect, is a new type of imaging technology. It has the advantages of both high contrast of optical imaging and high penetrability of ultrasound imaging. Photoacoustic imaging molecules consist of intrinsic chromophores and exogenous contrast agents. With the use of exogenous contrast agents, this modality has shown potential for molecular imaging, which has broad prospect and great importance in biomedical research. In this paper, we have reviewed exogenous contrast agents for molecular photoacoustic imaging, such as small-molecule organic dyes, noble metal nanoparticles, carbon nanostructures, organic polymer nanoparticles, genetically encoded chromophores, copper and iron compounds, and semiconducting polymer nanoparticles. Their physical and chemical characteristics and synthesis methods are talked about. Ligand molecules such as small molecules, peptides, affibodies, aptamers and antibodies are introduced. The future developing researches are also prospected.
  • loading
  • [1] Zhou Q, Li Z, Zhou J, et al. In vivo photoacoustic tomography of EGFR overexpressed in hepatocellular carcinoma mouse xenograft[J]. Photoacoustics, 2016, 4: 43-54. doi:  10.1016/j.pacs.2016.04.001
    [2] Lozano N, Al-Ahmady ZS, Beziere NS, et al. Monoclonal antibody-targeted PEGylated liposome-ICG encapsulating doxo-rubicin as a potential theranostic agent[J]. Int J Pharm, 2015, 482: 2-10. doi:  10.1016/j.ijpharm.2014.10.045
    [3] Levi J, Kothapalli SR, Bohndiek S, et al. Molecular photoacoustic imaging of follicular thyroid carcinoma[J]. Clinical Cancer Research, 2013, 19: 1494-1502. doi:  10.1158/1078-0432.CCR-12-3061
    [4] Niu Y, Song W, Zhang D, et al. Functional computer-to-plate near-infrared absorbers as highly efficient photoacoustic dyes[J]. Acta Biomater, 2016, 43: 262-268. doi:  10.1016/j.actbio.2016.07.026
    [5] Jeon M, Song WT, Huynh E, et al. Methylene blue microbubbles as a model dual-modality contrast agent for ultrasound and activatable photoacoustic imaging[J]. J Biomed Opt, 2014, 19:16005. doi:  10.1117/1.JBO.19.1.016005
    [6] Tsunoi Y, Sato S, Kawauchi S, et al. In vivo photoacoustic molecular imaging of the distribution of serum, albumin in rat burned skin[J]. Burns, 2013, 39: 1403-1408. doi:  10.1016/j.burns.2013.03.007
    [7] Park S, Kim J, Jeon M, et al. In vivo photoacoustic and fluorescence cystography using clinically relevant dual modal indocyanine green[J]. Sensors, 2014, 14: 19660-19668. doi:  10.3390/s141019660
    [8] Sano K, Ohashi M, Kanazaki K, et al. In vivo photoacoustic imaging of cancer using indocyanine green-labeled monoclonal antibody targeting the epidermal growth factor receptor[J]. Biochem Biophys Res Commun, 2015, 464: 820-825. doi:  10.1016/j.bbrc.2015.07.042
    [9] Chen J, Liang H, Lin L, et al. Gold-nanorods-based gene carriers with the capability of photoacoustic imaging and photothermal therapy[J]. ACS Appl Mater Interfaces, 2016, 8: 31558-31566. doi:  10.1021/acsami.6b10166
    [10] Han J, Zhang J, Yang M, et al. Glucose-functionalized Au nanoprisms for optoacoustic imaging and near-infrared photothermal therapy[J]. Nanoscale, 2016, 8: 492-499. doi:  10.1039/C5NR06261F
    [11] Liang S, Li C, Zhang C, et al. CD44v6 monoclonal antibody-conjugated gold nanostars for targeted photoacoustic imaging and plasmonic photothermal therapy of gastric cancer stem-like cells[J]. Theranostics, 2015, 5: 970-984. doi:  10.7150/thno.11632
    [12] Chen YS, Frey W, Kim S, et al. Enhanced thermal stability of silica-coated gold nanorods for photoacoustic imaging and image-guided therapy[J]. Opt Express, 2010, 18: 8867-8878. doi:  10.1364/OE.18.008867
    [13] Preston TC and Signorell R Growth and optical properties of gold nanoshells prior to the formation of a continuous metallic layer[J]. ACS Nano, 2009, 3: 3696-3706. doi:  10.1021/nn900883d
    [14] Luke GP, Bashyam A, Homan KA, et al. Silica-coated gold nanoplates as stable photoacoustic contrast agents for sentinel lymph node imaging[J]. Nanotechnology, 2013, 24: 455101. doi:  10.1088/0957-4484/24/45/455101
    [15] Weber J, Beard PC, Bohndiek SE. Contrast agents for molecular photoacoustic imaging[J]. Nat Methods, 2016, 13: 639-650. doi:  10.1038/nmeth.3929
    [16] Zackrisson S, van de Ven SM, Gambhir SS. Light in and sound out: emerging translational strategies for photoacoustic imaging[J]. Cancer Res, 2014, 74: 979-1004. doi:  10.1158/0008-5472.CAN-13-2387
    [17] Kim JW, Galanzha EI, Shashkov EV, et al. Golden carbon nanotubes as multimodal photoacoustic and photothermal high-contrast molecular agents[J]. Nat Nanotechnol, 2009, 4: 688-694. doi:  10.1038/nnano.2009.231
    [18] de la Zerda A, Liu Z, Bodapati S, et al. Ultrahigh sensitivity carbon nanotube agents for photoacoustic molecular imaging in living mice[J]. Nano Lett, 2010, 10: 2168-2172. doi:  10.1021/nl100890d
    [19] de la Zerda A, Bodapati S, Teed R, et al. Family of enhanced photoacoustic imaging agents for high-sensitivity and multiplexing studies in living mice[J]. ACS Nano, 2012, 6: 4694-4701. doi:  10.1021/nn204352r
    [20] Mahmood M, Karmakar A, Fejleh A, et al. Synergistic enhancement of cancer therapy using a combination of carbon nanotubes and anti-tumor drug[J]. Nanomedicine, 2009, 4: 883-893. doi:  10.2217/nnm.09.76
    [21] Poland CA, Duffin R, Kinloch I, et al. Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study[J]. Nature Nanotechnology, 2008, 3: 423-428. doi:  10.1038/nnano.2008.111
    [22] Warheit DB, Laurence BR, Reed KL, et al. Comparative pulmonary toxicity assessment of single-wall carbon nanotubes in rats[J]. Toxicological Sciences, 2004, 77: 117-125. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=HighWire000002525161
    [23] Saito N, Haniu H, Usui Y, et al. Safe clinical use of carbon nanotubes as innovative biomaterials[J]. Chemical Reviews, 2014, 114: 6040-6079. doi:  10.1021/cr400341h
    [24] Zha ZB, Deng ZJ, Li YY, et al. Biocompatible polypyrrole nanoparticles as a novel organic photoacoustic contrast agent for deep tissue imaging[J]. Nanoscale, 2013, 5: 4462-4467. doi:  10.1039/c3nr00627a
    [25] Lovell JF, Jin CS, Huynh E, et al. Porphysome nanovesicles generated by porphyrin bilayers for use as multimodal biophotonic contrast agents[J]. Nature Materials, 2011, 10: 324-332. doi:  10.1038/nmat2986
    [26] Huynh E, Jin CS, Wilson BC, et al. Aggregate enhanced trimodal porphyrin shell microbubbles for ultrasound, photoacoustic, and fluorescence imaging[J]. Bioconjugate Chemistry, 2014, 25: 796-801. doi:  10.1021/bc5000725
    [27] Cai X, Li L, Krumholz A, et al. Multi-scale molecular photoacoustic tomography of gene expression[J]. Plos One, 2012, 7:e43999. doi:  10.1371/journal.pone.0043999
    [28] Filonov GS, Krumholz A, Xia J, et al. Deep-tissue photoacoustic tomography of a genetically encoded near-infrared fluorescent probe[J]. Angew Chem Int Ed Engl, 2012, 51: 1448-1451. doi:  10.1002/anie.201107026
    [29] Ku G, Zhou M, Song SL, et al. Copper sulfide nanoparticles as a new class of photoacoustic contrast agent for deep tissue imaging at 1064 nm[J]. Acs Nano, 2012, 6: 7489-7496. doi:  10.1021/nn302782y
    [30] Xi L, Grobmyer SR, Zhou GY, et al. Molecular photoa-coustic tomography of breast cancer using receptor targeted magnetic iron oxide nanoparticles as contrast agents[J]. J Biophotonics, 2014, 7: 401-409. doi:  10.1002/jbio.201200155
    [31] Pecher J, Mecking S. Nanoparticles of conjugated polymers[J]. Chem Rev, 2010, 110: 6260-6279. doi:  10.1021/cr100132y
    [32] Pu K, Chattopadhyay N, Rao J.Recent advances of semiconducting polymer nanoparticles in in vivo molecular imaging[J]. J Control Release, 2016, 240: 312-322. doi:  10.1016/j.jconrel.2016.01.004
    [33] Feng L, Zhu C, Yuan H, et al. Conjugated polymer nanoparticles: preparation, properties, functionalization and biological applications[J]. Chem Soc Rev, 2013, 42: 6620-6633. doi:  10.1039/c3cs60036j
    [34] Pu K, Shuhendler AJ, Jokerst JV, et al. Semiconducting polymer nanoparticles as photoacoustic molecular imaging probes in living mice[J]. Nat Nanotechnol, 2014, 9: 233-239. doi:  10.1038/nnano.2013.302
    [35] Pu K, Mei J, Jokerst JV, et al. Diketopyrrolopyrrole-based semiconducting polymer nanoparticles for in vivo photoacou-stic imaging[J]. Adv Mater, 2015, 27: 5184-5190. doi:  10.1002/adma.201502285
    [36] Cheng K, Kothapalli SR, Liu H, et al. Construction and validation of nano gold tripods for molecular imaging of living subjects[J]. J Am Chem Soc, 2014, 136: 3560-3571. doi:  10.1021/ja412001e
    [37] Yang M, Cheng K, Qi S, et al. Affibody modified and radiolabeled gold-iron oxide hetero-nanostructures for tumor PET, optical and MR imaging[J]. Biomaterials, 2013, 34: 2796-2806. doi:  10.1016/j.biomaterials.2013.01.014
    [38] Yasun E, Kang H, Erdal H, et al. Cancer cell sensing and therapy using affinity tag-conjugated gold nanorods[J]. Interface Focus, 2013, 3: 20130006. doi:  10.1098/rsfs.2013.0006
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (484) PDF downloads(476) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return