Turn off MathJax
Article Contents
YANG Jianle, WU Nan. Mechanism of Action of Antisense Oligonucleotides and Their Research Progress in the Musculoskeletal System[J]. Medical Journal of Peking Union Medical College Hospital. doi: 10.12290/xhyxzz.2023-0656
Citation: YANG Jianle, WU Nan. Mechanism of Action of Antisense Oligonucleotides and Their Research Progress in the Musculoskeletal System[J]. Medical Journal of Peking Union Medical College Hospital. doi: 10.12290/xhyxzz.2023-0656

Mechanism of Action of Antisense Oligonucleotides and Their Research Progress in the Musculoskeletal System

doi: 10.12290/xhyxzz.2023-0656
Funds:

CAMS Innovation Fund for Medical Sciences (2021-I2M-1-051); National High Level Hospital Clinical Research Funding (2022-PUMCH-C-033)

  • Received Date: 2023-12-27
  • Accepted Date: 2024-01-15
  • Available Online: 2024-03-05
  • Antisense oligonucleotides (ASOs) are a novel class of small molecule gene-targeted drugs that can bind to target mRNA. Through complementary base pairing with the target sequence, antisense oligonucleotides achieve targeted regulation of genes. With the continuous development of gene sequencing technology and molecular synthesis techniques, research and applications of ASOs in the musculoskeletal system are further advancing. This article reviews the mechanisms of ASOs in gene silencing and expression regulation, as well as their prospects in gene therapy. In addition, we evaluate the research progress and applications of ASOs in musculoskeletal diseases, while analyzing the urgent issues currently faced by this class of drugs. This comprehensive study aims to deepen our understanding of ASOs and provide valuable references for their widespread application in biomedical research and clinical settings.
  • loading
  • [1] J A Doudna, E Charpentier. Genome editing. The new frontier of genome engineering with CRISPR-Cas9[J]. Science, 2014, 346(6213): 1258096.
    [2] C Happi Mbakam, G Lamothe, G Tremblay, et al. CRISPR-Cas9 Gene Therapy for Duchenne Muscular Dystrophy[J]. Neurotherapeutics, 2022, 19(3): 931-41.
    [3] K I Fujita, T Ishizuka, M Mitsukawa, et al. Regulating Divergent Transcriptomes through mRNA Splicing and Its Modulation Using Various Small Compounds[J]. Int J Mol Sci, 2020, 21(6).
    [4] X Li, W Pu, Q Zheng, et al. Proteolysis-targeting chimeras (PROTACs) in cancer therapy[J]. Mol Cancer, 2022, 21(1): 99.
    [5] A Goga, M Stoffel. Therapeutic RNA-silencing oligonucleotides in metabolic diseases[J]. Nat Rev Drug Discov, 2022, 21(6): 417-39.
    [6] S T Crooke, B F Baker, R M Crooke, et al. Antisense technology: an overview and prospectus[J]. Nat Rev Drug Discov, 2021, 20(6): 427-53.
    [7] C F Bennett. Therapeutic Antisense Oligonucleotides Are Coming of Age[J]. Annu Rev Med, 2019, 70: 307-21.
    [8] R S Finkel, E Mercuri, B T Darras, et al. Nusinersen versus Sham Control in InfantileOnset Spinal Muscular Atrophy[J]. N Engl J Med, 2017, 377(18): 1723-32.
    [9] M D de Smet, C J Meenken, G J van den Horn. Fomivirsen - a phosphorothioate oligonucleotide for the treatment of CMV retinitis[J]. Ocul Immunol Inflamm, 1999, 7(3-4): 189-98.
    [10] NCT03647228. A Phase 1/2a Study to Assess the Safety, Tolerability, Pharmacokinetics and Pharmacodynamics of Single and Multiple Doses of IONISENaCRx in Healthy Volunteers and Patients With Cystic Fibrosis[Z]. 2021
    [11] X H Liang, H Sun, J G Nichols, et al. RNase H1-Dependent Antisense Oligonucleotides Are Robustly Active in Directing RNA Cleavage in Both the Cytoplasm and the Nucleus[J]. Mol Ther, 2017, 25(9): 2075-92.
    [12] S T Crooke. Molecular Mechanisms of Antisense Oligonucleotides[J]. Nucleic Acid Ther, 2017, 27(2): 70-7.
    [13] I R Reid, E O Billington. Drug therapy for osteoporosis in older adults[J]. Lancet, 2022, 399(10329): 1080-92.
    [14] E Canalis, T R Grossman, M Carrer, et al. Antisense oligonucleotides targeting Notch2 ameliorate the osteopenic phenotype in a mouse model of Hajdu-Cheney syndrome[J]. J Biol Chem, 2020, 295(12): 3952-64.
    [15] L Sharma. Osteoarthritis of the Knee[J]. N Engl J Med, 2021, 384(1): 51-9.
    [16] A Nakamura, Y R Rampersaud, S Nakamura, et al. microRNA-181a-5p antisense oligonucleotides attenuate osteoarthritis in facet and knee joints[J]. Ann Rheum Dis, 2019, 78(1): 111-21.
    [17] R Tamura. Current Understanding of Neurofibromatosis Type 1, 2, and Schwannomatosis[J]. Int J Mol Sci, 2021, 22(11).
    [18] A Leier, M Moore, H Liu, et al. Targeted exon skipping of NF1 exon 17 as a therapeutic for neurofibromatosis type I[J]. Mol Ther Nucleic Acids, 2022, 28: 261-78.
    [19] A Aartsma-Rus, I B Ginjaar, K Bushby. The importance of genetic diagnosis for Duchenne muscular dystrophy[J]. J Med Genet, 2016, 53(3): 145-51.
    [20] I E C Verhaart, A Aartsma-Rus. Therapeutic developments for Duchenne muscular dystrophy[J]. Nat Rev Neurol, 2019, 15(7): 373-86.
    [21] G Patterson, H Conner, M Groneman, et al. Duchenne muscular dystrophy: Current treatment and emerging exon skipping and gene therapy approach[J]. Eur J Pharmacol, 2023, 947: 175675.
    [22] S Cirak, V Arechavala-Gomeza, M Guglieri, et al. Exon skipping and dystrophin restoration in patients with Duchenne muscular dystrophy after systemic phosphorodiamidate morpholino oligomer treatment: an open-label, phase 2, dose-escalation study[J]. Lancet, 2011, 378(9791): 595-605.
    [23] D E Frank, F J Schnell, C Akana, et al. Increased dystrophin production with golodirsen in patients with Duchenne muscular dystrophy[J]. Neurology, 2020, 94(21): e2270-e82.
    [24] E Mercuri, C J Sumner, F Muntoni, et al. Spinal muscular atrophy[J]. Nat Rev Dis Primers, 2022, 8(1): 52.
    [25] T Fang, G Je, P Pacut, et al. Gene Therapy in Amyotrophic Lateral Sclerosis[J]. Cells, 2022, 11(13).
    [26] T M Miller, M E Cudkowicz, A Genge, et al. Trial of Antisense Oligonucleotide Tofersen for SOD1 ALS[J]. N Engl J Med, 2022, 387(12): 1099-110.
    [27] X Chi, P Gatti, T Papoian. Safety of antisense oligonucleotide and siRNA-based therapeutics[J]. Drug Discov Today, 2017, 22(5): 823-33.
    [28] T Ramasamy, H B Ruttala, S Munusamy, et al. Nano drug delivery systems for antisense oligonucleotides (ASO) therapeutics[J]. J Control Release, 2022, 352: 861-78.
    [29] A J Debacker, J Voutila, M Catley, et al. Delivery of Oligonucleotides to the Liver with GalNAc: From Research to Registered Therapeutic Drug[J]. Mol Ther, 2020, 28(8): 1759-71.
    [30] T C Roberts, R Langer, M J A Wood. Advances in oligonucleotide drug delivery[J]. Nat Rev Drug Discov, 2020, 19(10): 673-94.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (45) PDF downloads(6) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return