Volume 15 Issue 2
Mar.  2024
Turn off MathJax
Article Contents
SONG Shujia, SUN Chen, PEI Lijian, XU Weihai, HUANG Yuguang. Progress in Diagnosis and Treatment of Central Post-stroke Pain[J]. Medical Journal of Peking Union Medical College Hospital, 2024, 15(2): 265-271. doi: 10.12290/xhyxzz.2023-0591
Citation: SONG Shujia, SUN Chen, PEI Lijian, XU Weihai, HUANG Yuguang. Progress in Diagnosis and Treatment of Central Post-stroke Pain[J]. Medical Journal of Peking Union Medical College Hospital, 2024, 15(2): 265-271. doi: 10.12290/xhyxzz.2023-0591

Progress in Diagnosis and Treatment of Central Post-stroke Pain

doi: 10.12290/xhyxzz.2023-0591
Funds:

National High Level Hospital Clinical Research Funding 2022-PUMCH-B-006

More Information
  • Central post-stroke pain (CPSP), a neuropathic pain syndrome occurring after a cerebrovascular accident, is characterized by pain or paraesthesia in the part of the body dominated by the area of the brain where blood vessels are injured. CPSP patients are often accompanied by anxiety, depression and other emotional disorders, which have a serious negative impact on patients' quality of life. However, the pathogenesis of CPSP has not been fully elucidated, the clinical diagnosis rate is not high, and the commonly used treatment methods are not effective. This article reviews the clinical features, epidemiology, pathogenesis and treatment of CPSP in order to provide reference for the elucidation of CPSP mechanism and effective treatment.
  • loading
  • [1] Klit H, Finnerup N B, Jensen T S. Central post-stroke pain: clinical characteristics, pathophysiology, and management[J]. Lancet Neurol, 2009, 8(9): 857-868. doi:  10.1016/S1474-4422(09)70176-0
    [2] Treede R D, Jensen T S, Campbell J N, et al. Neuropathic pain: redefinition and a grading system for clinical and research purposes[J]. Neurology, 2008, 70(18): 1630-1635. doi:  10.1212/01.wnl.0000282763.29778.59
    [3] De Smet Y. The thalamic syndrome of Déjérine-Roussy. Prolegomenon[J]. Rev Neurol (Paris), 1986, 142(4): 259-266.
    [4] Ali M, Tibble H, Brady M C, et al. Prevalence, trajectory, and predictors of poststroke pain: retrospective analysis of pooled clinical trial data set[J]. Stroke, 2023, 54(12): 3107-3116. doi:  10.1161/STROKEAHA.123.043355
    [5] Naess H, Lunde L, Brogger J. The effects of fatigue, pain, and depression on quality of life in ischemic stroke patients: the Bergen Stroke Study[J]. Vasc Health Risk Manag, 2012, 8: 407-413.
    [6] Liampas A, Velidakis N, Georgiou T, et al. Prevalence and management challenges in central Post-Stroke neuropathic pain: a systematic review and meta-analysis[J]. Adv Ther, 2020, 37(7): 3278-3291. doi:  10.1007/s12325-020-01388-w
    [7] Grönberg A, Henriksson I, Stenman M, et al. Incidence of aphasia in ischemic stroke[J]. Neuroepidemiology, 2022, 56(3): 174-182. doi:  10.1159/000524206
    [8] Nesbitt J, Moxham S, Ramadurai G, et al. Improving pain assessment and managment in stroke patients[J]. BMJ Qual Improv Rep, 2015, 4(1): u203375. w3105. doi:  10.1136/bmjquality.u203375.w3105
    [9] Saadé N E, Jabbur S J. Nociceptive behavior in animal models for peripheral neuropathy: spinal and supraspinal mechanisms[J]. Prog Neurobiol, 2008, 86(1): 22-47. doi:  10.1016/j.pneurobio.2008.06.002
    [10] Cheng Y P, Wu B Q, Huang J J, et al. Research progress on the mechanisms of central Post-Stroke pain: a review[J]. Cell Mol Neurobiol, 2023, 43(7): 3083-3098. doi:  10.1007/s10571-023-01360-6
    [11] Mohanan A T, Nithya S, Nomier Y, et al. Stroke-induced central pain: overview of the mechanisms, management, and emerging targets of central post-stroke pain[J]. Pharmaceuticals (Basel), 2023, 16(8): 1103. doi:  10.3390/ph16081103
    [12] Yam M F, Loh Y C, Tan C S, et al. General pathways of pain sensation and the major neurotransmitters involved in pain regulation[J]. Int J Mol Sci, 2018, 19(8): 2164. doi:  10.3390/ijms19082164
    [13] Krause T, Brunecker P, Pittl S, et al. Thalamic sensory strokes with and without pain: differences in lesion patterns in the ventral posterior thalamus[J]. J Neurol Neurosurg Psychiatry, 2012, 83(8): 776-784. doi:  10.1136/jnnp-2011-301936
    [14] Wasserman J K, Koeberle P D. Development and characterization of a hemorrhagic rat model of central post-stroke pain[J]. Neuroscience, 2009, 161(1): 173-183. doi:  10.1016/j.neuroscience.2009.03.042
    [15] Treister A K, Hatch M N, Cramer S C, et al. Demystifying poststroke pain: from etiology to treatment[J]. PM R, 2017, 9(1): 63-75. doi:  10.1016/j.pmrj.2016.05.015
    [16] Morishita T, Inoue T. Brain stimulation therapy for central post-stroke pain from a perspective of interhemispheric neural network remodeling[J]. Front Hum Neurosci, 2016, 10: 166.
    [17] Betancur D F A, Tarragó M D G L, Torres I L D S, et al. Central post-stroke pain: an integrative review of somatotopic damage, clinical symptoms, and neurophysiological measures[J]. Front Neurol, 2021, 12: 678198. doi:  10.3389/fneur.2021.678198
    [18] Gritsch S, Bali K K, Kuner R, et al. Functional characterization of a mouse model for central post-stroke pain[J]. Mol Pain, 2016, 12: 1744806916629049. http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10480625
    [19] Di Virgilio F, Dal Ben D, Sarti A C, et al. The P2X7 receptor in infection and inflammation[J]. Immunity, 2017, 47(1): 15-31. doi:  10.1016/j.immuni.2017.06.020
    [20] Wan L, Li Z F, Liu T T, et al. Epoxyeicosatrienoic acids: Emerging therapeutic agents for central post-stroke pain[J]. Pharmacol Res, 2020, 159: 104923. doi:  10.1016/j.phrs.2020.104923
    [21] Kuan Y H, Shih H C, Tang S C, et al. Targeting P(2)X(7) receptor for the treatment of central post-stroke pain in a rodent model[J]. Neurobiol Dis, 2015, 78: 134-145. doi:  10.1016/j.nbd.2015.02.028
    [22] Shih H C, Kuan Y H, Shyu B C. Targeting brain-derived neurotrophic factor in the medial thalamus for the treatment of central poststroke pain in a rodent model[J]. Pain, 2017, 158(7): 1302-1313. doi:  10.1097/j.pain.0000000000000915
    [23] Yang F, Luo W J, Sun W, et al. SDF1-CXCR4 signaling maintains central post-stroke pain through mediation of glial-neuronal interactions[J]. Front Mol Neurosci, 2017, 10: 226. doi:  10.3389/fnmol.2017.00226
    [24] Huang T F, Fu G L, Gao J, et al. Fgr contributes to hemorrhage-induced thalamic pain by activating NF-κB/ERK1/2 pathways[J]. JCI Insight, 2020, 5(20): e139987. doi:  10.1172/jci.insight.139987
    [25] Li H L, Lin M, Tan X P, et al. Role of sensory pathway injury in central post-stroke pain: a narrative review of its patho-genetic mechanism[J]. J Pain Res, 2023, 16: 1333-1343. doi:  10.2147/JPR.S399258
    [26] Matsuura W, Harada S, Liu K Y, et al. Evidence of a role for spinal HMGB1 in ischemic stress-induced mechanical allodynia in mice[J]. Brain Res, 2018, 1687: 1-10. doi:  10.1016/j.brainres.2018.02.026
    [27] Matsuura W, Nakamoto K, Tokuyama S. The involvement of DDAH1 in the activation of spinal NOS signaling in early stage of mechanical allodynia induced by exposure to ischemic stress in mice[J]. Biol Pharm Bull, 2019, 42(9): 1569-1574. doi:  10.1248/bpb.b19-00371
    [28] Harada S, Matsuura W, Takano M, et al. Proteomic profil-ing in the spinal cord and sciatic nerve in a global cerebral Ischemia-Induced mechanical allodynia mouse model[J]. Biol Pharm Bull, 2016, 39(2): 230-238. doi:  10.1248/bpb.b15-00647
    [29] Wang G X, Thompson S M. Maladaptive homeostatic plasticity in a rodent model of central pain syndrome: thalamic hyperexcitability after spinothalamic tract lesions[J]. J Neurosci, 2008, 28(46): 11959-11969. doi:  10.1523/JNEUROSCI.3296-08.2008
    [30] Willoch F, Schindler F, Wester H J, et al. Central poststroke pain and reduced opioid receptor binding within pain processing circuitries: a [11C]diprenorphine PET study[J]. Pain, 2004, 108(3): 213-220. doi:  10.1016/j.pain.2003.08.014
    [31] Krause T, Asseyer S, Taskin B, et al. The cortical signature of central poststroke pain: gray matter decreases in somatosensory, insular, and prefrontal cortices[J]. Cereb Cortex, 2016, 26(1): 80-88. doi:  10.1093/cercor/bhu177
    [32] Helmchen C, Lindig M, Petersen D, et al. Disappearance of central thalamic pain syndrome after contralateral parietal lobe lesion: implications for therapeutic brain stimulation[J]. Pain, 2002, 98(3): 325-330. doi:  10.1016/S0304-3959(02)00139-2
    [33] Choi H R, Aktas A, Bottros M M. Pharmacotherapy to manage central post-stroke pain[J]. CNS Drugs, 2021, 35(2): 151-160. doi:  10.1007/s40263-021-00791-3
    [34] Flaster M, Meresh E, Rao M, et al. Central poststroke pain: current diagnosis and treatment[J]. Top Stroke Rehabil, 2013, 20(2): 116-123. doi:  10.1310/tsr2002-116
    [35] Hesami O, Gharagozli K, Beladimoghadam N, et al. The efficacy of gabapentin in patients with central post-stroke pain[J]. Iran J Pharm Res, 2015, 14(Suppl): 95-101.
    [36] Serpell M G. Gabapentin in neuropathic pain syndromes: a randomised, double-blind, placebo-controlled trial[J]. Pain, 2002, 99(3): 557-566. doi:  10.1016/S0304-3959(02)00255-5
    [37] Radiansyah R S, Hadi D W. Repetitive transcranial magnetic stimulation in central post-stroke pain: current status and future perspective[J]. Korean J Pain, 2023, 36(4): 408-424. doi:  10.3344/kjp.23220
    [38] Ohn S H, Chang W H, Park C H, et al. Neural correlates of the antinociceptive effects of repetitive transcranial magnetic stimulation on central pain after stroke[J]. Neurorehabil Neural Repair, 2012, 26(4): 344-352. doi:  10.1177/1545968311423110
    [39] Leung A, Donohue M, Xu R H, et al. rTMS for suppressing neuropathic pain: a meta-analysis[J]. J Pain, 2009, 10(12): 1205-1216. doi:  10.1016/j.jpain.2009.03.010
    [40] Pan L J, Zhu H Q, Zhang X A, et al. The mechanism and effect of repetitive transcranial magnetic stimulation for post-stroke pain[J]. Front Mol Neurosci, 2022, 15: 1091402.
    [41] Yang S, Chang M C. Effect of repetitive transcranial magnetic stimulation on pain management: a systematic narrative review[J]. Front Neurol, 2020, 11: 114. doi:  10.3389/fneur.2020.00114
    [42] Ramger B C, Bader K A, Davies S P, et al. Effects of non-invasive brain stimulation on clinical pain intensity and experimental pain sensitivity among individuals with central post-stroke pain: a systematic review[J]. J Pain Res, 2019, 12: 3319-3329. doi:  10.2147/JPR.S216081
    [43] Baik J S, Yang J H, Ko S H, et al. Exploring the potential of transcranial direct current stimulation for relieving central post-stroke pain: a randomized controlled pilot study[J]. Life (Basel), 2023, 13(5): 1172.
    [44] David M C M M, Moraes A A D, Costa M L D, et al. Transcranial direct current stimulation in the modulation of neuropathic pain: a systematic review[J]. Neurol Res, 2018, 40(7): 555-563.
    [45] Lempka S F, Malone D A, Jr, Hu B, et al. Randomized clinical trial of deep brain stimulation for poststroke pain[J]. Ann Neurol, 2017, 81(5): 653-663. doi:  10.1002/ana.24927
    [46] Boccard S G J, Prangnell S J, Pycroft L, et al. Long-term results of deep brain stimulation of the anterior cingulate cortex for neuropathic pain[J]. World Neurosurg, 2017, 106: 625-637. doi:  10.1016/j.wneu.2017.06.173
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1132) PDF downloads(59) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return