Volume 13 Issue 6
Nov.  2022
Turn off MathJax
Article Contents
WANG Guangjian, WANG Xiaoting. Host Response and Hemodynamics[J]. Medical Journal of Peking Union Medical College Hospital, 2022, 13(6): 929-935. doi: 10.12290/xhyxzz.2022-0483
Citation: WANG Guangjian, WANG Xiaoting. Host Response and Hemodynamics[J]. Medical Journal of Peking Union Medical College Hospital, 2022, 13(6): 929-935. doi: 10.12290/xhyxzz.2022-0483

Host Response and Hemodynamics

doi: 10.12290/xhyxzz.2022-0483
Funds:

National High Level Hospital Clinical Research Funding 2022-PUMCH-B-026

More Information
  • Corresponding author: WANG Xiaoting, E-mail: icuting@163.com
  • Received Date: 2022-08-28
  • Accepted Date: 2022-10-10
  • Available Online: 2022-11-01
  • Publish Date: 2022-11-30
  • With the continuous exploration of the pathophysiological mechanisms of critical illness, the host response, a "bridge" between different etiologies and the development of critical illness, has received much attention. Host response is the focus of critical illness pathophysiology, and hemodynamics is the core of critical illness development. On the one hand, the host response has a significant impact on hemodynamics; on the other hand, the intervention of the host response through analgesic-sedative-anti-sympathetic therapy and the management of inflammation, immunity, coagulation, metabolism, and bioenergy can stabilize the hemodynamics and achieve the goal of critical illness treatment. A deepening understanding of host response not only enriches the connotation of hemodynamics but also facilitates further study and exploration of the pathophysiological mechanisms of critical illness. Therefore, we describe host response from three aspects: a new understanding of critical illness based on host response, the effect of host response on hemodynamics, and hemodynamic therapy based on the host response.
  • loading
  • [1] Hawchar F, Rao C, Akil A, et al. The Potential Role of Extracorporeal Cytokine Removal in Hemodynamic Stabilization in Hyperinflammatory Shock[J]. Biomedicines, 2021, 9: 768. doi:  10.3390/biomedicines9070768
    [2] Singer M, Deutschman CS, Seymour CW, et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3)[J]. JAMA, 2016, 315: 801-810. doi:  10.1001/jama.2016.0287
    [3] 王广健, 刘大为, 王小亭. 基于机体反应与血流动力学的重症新认知[J]. 中华内科杂志, 2022, 61: 246-248. doi:  10.3760/cma.j.cn112138-20211215-00890
    [4] Levy MM, Fink MP, Marshall JC, et al. 2001 SCCM/ESICM/ACCP/ATS/SIS International Sepsis Definitions Conference[J]. Crit Care Med, 2003, 31: 1250-1256. doi:  10.1097/01.CCM.0000050454.01978.3B
    [5] Marshall JC. Iatrogenesis, inflammation and organ injury: insights from a murine model[J]. Crit Care, 2006, 10: 173. doi:  10.1186/cc5087
    [6] 刘大为. 重症医学: 学科体系的形成与发展[J]. 中华危重病急救医学, 2022, 34: 1-4. doi:  10.3760/cma.j.cn121430-20211224-01916
    [7] Brame AL, Singer M. Stressing the obvious? An allostatic look at critical illness[J]. Crit Care Med, 2010, 38: S600-S607. doi:  10.1097/CCM.0b013e3181f23e92
    [8] Arina P, Singer M. Pathophysiology of sepsis[J]. Curr Opin Anaesthesiol, 2021, 34: 77-84. doi:  10.1097/ACO.0000000000000963
    [9] Osuchowski MF, Winkler MS, Skirecki T, et al. The COVID-19 puzzle: deciphering pathophysiology and phenotypes of a new disease entity[J]. Lancet Respir Med, 2021, 9: 622-642. doi:  10.1016/S2213-2600(21)00218-6
    [10] Sweeney TE, Liesenfeld O, Wacker J, et al. Validation of Inflammopathic, Adaptive, and Coagulopathic Sepsis Endotypes in Coronavirus Disease 2019[J]. Crit Care Med, 2021, 49: e170-e178. doi:  10.1097/CCM.0000000000004786
    [11] Neyton LPA, Zheng X, Skouras C, et al. Molecular Patterns in Acute Pancreatitis Reflect Generalizable Endo-types of the Host Response to Systemic Injury in Humans[J]. Ann Surg, 2022, 275: e453-e462. doi:  10.1097/SLA.0000000000003974
    [12] Schuurman AR, Reijnders TDY, Van Engelen TSR, et al. The host response in different aetiologies of community-acquired pneumonia[J]. EBioMedicine, 2022, 81: 104082. doi:  10.1016/j.ebiom.2022.104082
    [13] Barbee RW, Reynolds PS, Ward KR. Assessing shock resuscitation strategies by oxygen debt repayment[J]. Shock, 2010, 33: 113-122. doi:  10.1097/SHK.0b013e3181b8569d
    [14] Khellaf A, Khan DZ, Helmy A. Recent advances in traum-atic brain injury[J]. J Neurol, 2019, 266: 2878-2889. doi:  10.1007/s00415-019-09541-4
    [15] Belletti A, Landoni G, Lomivorotov VV, et al. Adrenergic Downregulation in Critical Care: Molecular Mechanisms and Therapeutic Evidence[J]. J Cardiothorac Vasc Anesth, 2020, 34: 1023-1041. doi:  10.1053/j.jvca.2019.10.017
    [16] Rudiger A, Singer M. Decatecholaminisation during sepsis[J]. Crit Care, 2016, 20: 309. doi:  10.1186/s13054-016-1488-x
    [17] Carrara M, Ferrario M, Bollen Pinto B, et al. The autono-mic nervous system in septic shock and its role as a future therapeutic target: a narrative review[J]. Ann Intensive Care, 2021, 11: 80. doi:  10.1186/s13613-021-00869-7
    [18] Tang BM, Feng CG, Mclean AS. Understanding the role of host response in influenza pneumonitis[J]. Intensive Care Med, 2019, 45: 1012-1014. doi:  10.1007/s00134-019-05582-5
    [19] Kellum JA, Pike F, Yealy DM, et al. Relationship Between Alternative Resuscitation Strategies, Host Response and Injury Biomarkers, and Outcome in Septic Shock: Analysis of the Protocol-Based Care for Early Septic Shock Study[J]. Crit Care Med, 2017, 45: 438-445. doi:  10.1097/CCM.0000000000002206
    [20] Chalmers JD, Crichton ML, Goeminne PC, et al. Management of hospitalised adults with coronavirus disease 2019 (COVID-19): a European Respiratory Society living guideline[J]. Eur Respir J, 2021, 57: 2100048. doi:  10.1183/13993003.00048-2021
    [21] Morelli A, Ertmer C, Westphal M, et al. Effect of heart rate control with esmolol on hemodynamic and clinical outcomes in patients with septic shock: a randomized clinical trial[J]. JAMA, 2013, 310: 1683-1691. doi:  10.1001/jama.2013.278477
    [22] Moon JS, Hisata S, Park MA, et al. mTORC1-Induced HK1-Dependent Glycolysis Regulates NLRP3 Inflammasome Activation[J]. Cell Rep, 2015, 12: 102-115. doi:  10.1016/j.celrep.2015.05.046
    [23] Cariou A, Pinsky MR, Monchi M, et al. Is myocardial adrenergic responsiveness depressed in human septic shock?[J]. Intensive Care Med, 2008, 34: 917-922. doi:  10.1007/s00134-008-1022-y
    [24] Schmidt C, Kurt B, Hocherl K, et al. Inhibition of NF-kappaB activity prevents downregulation of alpha1-adrenergic receptors and circulatory failure during CLP-induced sepsis[J]. Shock, 2009, 32: 239-246. doi:  10.1097/SHK.0b013e3181994752
    [25] Elenkov IJ, Wilder RL, Chrousos GP, et al. The sympathe-tic nerve--an integrative interface between two supersystems: the brain and the immune system[J]. Pharmacol Rev, 2000, 52: 595-638.
    [26] Stolk RF, Van Der Pasch E, Naumann F, et al. Norepinephrine Dysregulates the Immune Response and Compro-mises Host Defense during Sepsis[J]. Am J Respir Crit Care Med, 2020, 202: 830-842. doi:  10.1164/rccm.202002-0339OC
    [27] Scanzano A, Cosentino M. Adrenergic regulation of innate immunity: a review[J]. Front Pharmacol, 2015, 6: 171.
    [28] Correa TD, Takala J, Jakob SM. Angiotensin Ⅱ in septic shock[J]. Crit Care, 2015, 19: 98. doi:  10.1186/s13054-015-0802-3
    [29] Lentz SR, Tsiang M, Sadler JE. Regulation of thrombomodulin by tumor necrosis factor-alpha: comparison of transcriptional and posttranscriptional mechanisms[J]. Blood, 1991, 77: 542-550. doi:  10.1182/blood.V77.3.542.542
    [30] Gleeson LE, Sheedy FJ. Metabolic reprogramming & inflammation: Fuelling the host response to pathogens[J]. Semin Immunol, 2016, 28: 450-468. doi:  10.1016/j.smim.2016.10.007
    [31] Ince C. Hemodynamic coherence and the rationale for monitoring the microcirculation[J]. Crit Care, 2015, 19: S8. doi:  10.1186/cc14726
    [32] Vincent JL, De Backer D. Circulatory shock[J]. N Engl J Med, 2013, 369: 1726-1734. doi:  10.1056/NEJMra1208943
    [33] Jin Y, Ji W, Yang H, et al. Endothelial activation and dysfunction in COVID-19: from basic mechanisms to potential therapeutic approaches[J]. Signal Transduct Target Ther, 2020, 5: 293. doi:  10.1038/s41392-020-00454-7
    [34] Van Vught LA, Wiewel MA, Hoogendijk AJ, et al. The Host Response in Patients with Sepsis Developing Intensive Care Unit-acquired Secondary Infections[J]. Am J Respir Crit Care Med, 2017, 196: 458-470. doi:  10.1164/rccm.201606-1225OC
    [35] Joffre J, Hellman J, Ince C, et al. Endothelial Responses in Sepsis[J]. Am J Respir Crit Care Med, 2020, 202: 361-370. doi:  10.1164/rccm.201910-1911TR
    [36] Uchimido R, Schmidt EP, Shapiro NI. The glycocalyx: a novel diagnostic and therapeutic target in sepsis[J]. Crit Care, 2019, 23: 16. doi:  10.1186/s13054-018-2292-6
    [37] De Backer D, Orbegozo Cortes D, Donadello K, et al. Pathophysiology of microcirculatory dysfunction and the pathogenesis of septic shock[J]. Virulence, 2014, 5: 73-79. doi:  10.4161/viru.26482
    [38] Johansson PI, Stensballe J, Ostrowski SR. Shock induced endotheliopathy (SHINE) in acute critical illness-a unifying pathophysiologic mechanism[J]. Crit Care, 2017, 21: 25. doi:  10.1186/s13054-017-1605-5
    [39] Zhang X, Sun D, Song JW, et al. Endothelial cell dysfunction and glycocalyx-A vicious circle[J]. Matrix Biol, 2018, 71-72: 421-431. doi:  10.1016/j.matbio.2018.01.026
    [40] Goligorsky MS, Sun D. Glycocalyx in Endotoxemia and Sepsis[J]. Am J Pathol, 2020, 190: 791-798. doi:  10.1016/j.ajpath.2019.06.017
    [41] Wilson DF. Oxidative phosphorylation: regulation and role in cellular and tissue metabolism[J]. J Physiol, 2017, 595: 7023-7038. doi:  10.1113/JP273839
    [42] Angus DC, Van Der Poll T. Severe sepsis and septic shock[J]. N Engl J Med, 2013, 369: 840-851. doi:  10.1056/NEJMra1208623
    [43] Abraham E, Singer M. Mechanisms of sepsis-induced organ dysfunction[J]. Crit Care Med, 2007, 35: 2408-2416. doi:  10.1097/01.CCM.0000282072.56245.91
    [44] Cole E, Gillespie S, Vulliamy P, et al. Multiple organ dysfunction after trauma[J]. Br J Surg, 2020, 107: 402-412. doi:  10.1002/bjs.11361
    [45] Beesley SJ, Weber G, Sarge T, et al. Septic Cardiomyopa-thy[J]. Crit Care Med, 2018, 46: 625-634.
    [46] Leibel S, Post M. Endogenous and Exogenous Stem/Progenitor Cells in the Lung and Their Role in the Pathogenesis and Treatment of Pediatric Lung Disease[J]. Front Pediatr, 2016, 4: 36.
    [47] Menon DK, Schwab K, Wright DW, et al. Position statement: definition of traumatic brain injury[J]. Arch Phys Med Rehabil, 2010, 91: 1637-1640. doi:  10.1016/j.apmr.2010.05.017
    [48] Zygun DA, Kortbeek JB, Fick GH, et al. Non-neurologic organ dysfunction in severe traumatic brain injury[J]. Crit Care Med, 2005, 33: 654-660. doi:  10.1097/01.CCM.0000155911.01844.54
    [49] Alobaidi R, Basu RK, Goldstein SL, et al. Sepsis-associated acute kidney injury[J]. Semin Nephrol, 2015, 35: 2-11. doi:  10.1016/j.semnephrol.2015.01.002
    [50] Thongprayoon C, Hansrivijit P, Kovvuru K, et al. Diagnostics, Risk Factors, Treatment and Outcomes of Acute Kidney Injury in a New Paradigm[J]. J Clin Med, 2020, 9: 1104. doi:  10.3390/jcm9041104
    [51] Klingensmith NJ, Coopersmith CM. The Gut as the Motor of Multiple Organ Dysfunction in Critical Illness[J]. Crit Care Clin, 2016, 32: 203-212. doi:  10.1016/j.ccc.2015.11.004
    [52] Vaschetto R, Cammarota G, Colombo D, et al. Effects of propofol on patient-ventilator synchrony and interaction during pressure support ventilation and neurally adjusted ventilatory assist[J]. Crit Care Med, 2014, 42: 74-82. doi:  10.1097/CCM.0b013e31829e53dc
    [53] Geloen A, Chapelier K, Cividjian A, et al. Clonidine and dexmedetomidine increase the pressor response to norepinephrine in experimental sepsis: a pilot study[J]. Crit Care Med, 2013, 41: e431-e438. doi:  10.1097/CCM.0b013e3182986248
    [54] Berkenbosch A, Teppema LJ, Olievier CN, et al. Influences of morphine on the ventilatory response to isocapnic hypoxia[J]. Anesthesiology, 1997, 86: 1342-1349. doi:  10.1097/00000542-199706000-00016
    [55] Koroglu A, Teksan H, Sagir O, et al. A comparison of the sedative, hemodynamic, and respiratory effects of dexmedetomidine and propofol in children undergoing magnetic resonance imaging[J]. Anesth Analg, 2006, 103: 63-67, table of contents. doi:  10.1213/01.ANE.0000219592.82598.AA
    [56] Coutrot M, Dudoignon E, Joachim J, et al. Perfusion index: Physical principles, physiological meanings and clinical implications in anaesthesia and critical care[J]. Anaesth Crit Care Pain Med, 2021, 40: 100964. doi:  10.1016/j.accpm.2021.100964
    [57] Trzeciak S, Cinel I, Phillip Dellinger R, et al. Resuscitat-ing the microcirculation in sepsis: the central role of nitric oxide, emerging concepts for novel therapies, and challenges for clinical trials[J]. Acad Emerg Med, 2008, 15: 399-413. doi:  10.1111/j.1553-2712.2008.00109.x
    [58] Yeh YC, Sun WZ, Ko WJ, et al. Dexmedetomidine pre-vents alterations of intestinal microcirculation that are induced by surgical stress and pain in a novel rat model[J]. Anesth Analg, 2012, 115: 46-53. doi:  10.1213/ANE.0b013e318253631c
    [59] Marik PE. Propofol: an immunomodulating agent[J]. Pharmacotherapy, 2005, 25: 28S-33S. doi:  10.1592/phco.2005.25.5_Part_2.28S
    [60] Zhang Q, Cai S, Guo L, et al. Propofol induces mitochondrial-associated protein LRPPRC and protects mitochondria against hypoxia in cardiac cells[J]. PLoS One, 2020, 15: e0238857. doi:  10.1371/journal.pone.0238857
    [61] Dellinger RP, Levy MM, Rhodes A, et al. Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock, 2012[J]. Intensive Care Med, 2013, 39: 165-228. doi:  10.1007/s00134-012-2769-8
    [62] Dunser MW, Hasibeder WR. Sympathetic overstimulation during critical illness: adverse effects of adrenergic stress[J]. J Intensive Care Med, 2009, 24: 293-316. doi:  10.1177/0885066609340519
    [63] Petitjeans F, Geloen A, Pichot C, et al. Is the Sympathetic System Detrimental in the Setting of Septic Shock, with Antihypertensive Agents as a Counterintuitive Approach? A Clinical Proposition[J]. J Clin Med, 2021, 10: 2100048.
    [64] Cioccari L, Luethi N, Bailey M, et al. The effect of dexmedetomidine on vasopressor requirements in patients with septic shock: a subgroup analysis of the Sedation Practice in Intensive Care Evaluation[SPICE Ⅲ] Trial[J]. Crit Care, 2020, 24: 441. doi:  10.1186/s13054-020-03115-x
    [65] Venet F, Cour M, Demaret J, et al. Decreased Monocyte HLA-DR Expression in Patients After Non-Shockable out-of-Hospital Cardiac Arrest[J]. Shock, 2016, 46: 33-36. doi:  10.1097/SHK.0000000000000561
    [66] Uchiba M, Okajima K, Murakami K, et al. Recombinant thrombomodulin prevents endotoxin-induced lung injury in rats by inhibiting leukocyte activation[J]. Am J Physiol, 1996, 271: L470-L475.
    [67] Sanders RD, Hussell T, Maze M. Sedation & immunomodulation[J]. Anesthesiol Clin, 2011, 29: 687-706. doi:  10.1016/j.anclin.2011.09.008
    [68] Marshall JC. Inflammation, coagulopathy, and the pathogenesis of multiple organ dysfunction syndrome[J]. Crit Care Med, 2001, 29: S99-S106. doi:  10.1097/00003246-200107001-00032
    [69] Guan WJ, Ni ZY, Hu Y, et al. Clinical Characteristics of Coronavirus Disease 2019 in China[J]. N Engl J Med, 2020, 382: 1708-1720. doi:  10.1056/NEJMoa2002032
    [70] Feldstein LR, Rose EB, Horwitz SM, et al. Multisystem Inflammatory Syndrome in U.S. Children and Adolescents[J]. N Engl J Med, 2020, 383: 334-346. doi:  10.1056/NEJMoa2021680
    [71] Ouldali N, Toubiana J, Antona D, et al. Association of Intravenous Immunoglobulins Plus Methylprednisolone vs Immunoglobulins Alone With Course of Fever in Multisystem Inflammatory Syndrome in Children[J]. JAMA, 2021, 325: 855-864. doi:  10.1001/jama.2021.0694
    [72] Sumi C, Okamoto A, Tanaka H, et al. Propofol induces a metabolic switch to glycolysis and cell death in a mitochondrial electron transport chain-dependent manner[J]. PLoS One, 2018, 13: e0192796. doi:  10.1371/journal.pone.0192796
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2076) PDF downloads(182) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return