Volume 13 Issue 6
Nov.  2022
Turn off MathJax
Article Contents
ZHAO Hua, WANG Xiaoting, LIU Dawei. New Cognition of Organ Hemodynamics: Artery-Perfusion-Vein[J]. Medical Journal of Peking Union Medical College Hospital, 2022, 13(6): 921-928. doi: 10.12290/xhyxzz.2022-0475
Citation: ZHAO Hua, WANG Xiaoting, LIU Dawei. New Cognition of Organ Hemodynamics: Artery-Perfusion-Vein[J]. Medical Journal of Peking Union Medical College Hospital, 2022, 13(6): 921-928. doi: 10.12290/xhyxzz.2022-0475

New Cognition of Organ Hemodynamics: Artery-Perfusion-Vein

doi: 10.12290/xhyxzz.2022-0475
Funds:

Beijing Municipal Science and Technology Project Z201100005520038

More Information
  • Corresponding author: LIU Dawei, E-mail: dwliu98@163.com
  • Received Date: 2022-08-25
  • Accepted Date: 2022-10-10
  • Available Online: 2022-10-29
  • Publish Date: 2022-11-30
  • The change of organ hemodynamics in critical patients is key to the impairment of organ function. Organ perfusion pressure is the direct power to ensure organ blood flow, which is affected by inlet organ pressure (arterial pressure) and outlet organ pressure (venous pressure). Different organs have unique perfusion pressure requirements and regulation systems for blood flow adjustment to match their physiological needs. As the supply side of organ perfusion, the blood flow of organs is influenced by mean arterial pressure (MAP)and autoregulation system. Organs with different autoregulatory abilities have different requirements for MAP, so the appropriate MAP should be decided according to the autoregulation range in clinical practice. However, organ blood flow perfusion is not only determined by the supply side, but also affected by venous reflux. Changes in arteriovenous gradient across important organs affect organ blood flow perfusion. Different organs have different tolerance levels for venous reflux disorders because their distance from the heart and the specificity of the organ itself. When conducting hemodynamic intervention, physicians should pay attention to the influence of different pressure changes on organ perfusion.
  • loading
  • [1] 刘大为. 重症治疗: 群体化、个体化、器官化[J]. 中华内科杂志, 2019, 58: 336-341. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHNK200711002.htm
    [2] Meng L, Wang Y, Zhang L, et al. Heterogeneity and variability in pressure autoregulation of organ blood flow: lessons learned over 100+ years[J]. Crit Care Med, 2019, 47: 436-448.
    [3] Aronson S, Stafford-Smith M, Phillips-Bute B, et al. Car diothoracic Anesthesiology Research Endeavors: Intraoperative systolic blood pressure variability predicts 30-day mortality in aortocoronary bypass surgery patients[J]. Anesthesiology, 2010, 113: 305-312. doi:  10.1097/ALN.0b013e3181e07ee9
    [4] Hirsch J, De Palma G, Tsai TT, et al. Impact of intraoperative hypotension and blood pressure fluctuations on early postoperative delirium after non-cardiac surgery[J]. Br J Anaesth, 2015, 115: 418-426. doi:  10.1093/bja/aeu458
    [5] Mascha EJ, Yang D, Weiss S, et al. Intraoperative mean arterial pressure variability and 30-day mortality in patients having noncardiac surgery[J]. Anesthesiology, 2015, 123: 79-91. doi:  10.1097/ALN.0000000000000686
    [6] Paulson OB, Strandgaard S, Edvinsson L. Cerebral autoregu-lation[J]. Cerebrovasc Brain Metab Rev, 1990, 2: 161-192.
    [7] Griffiths IR. Spinal cord blood flow in dogs: The effect of blood pressure[J]. J Neurol Neurosurg Psychiatry, 1973, 36: 914-920. doi:  10.1136/jnnp.36.6.914
    [8] Jeremy RW, Fletcher PJ, Thompson J. Coronary pressure-flow relations in hypertensive left ventricular hypertrophy. Comparison of intact autoregulation with physiological and pharmacological vasodilation in the dog[J]. Circ Res, 1989, 65: 224-236. doi:  10.1161/01.RES.65.1.224
    [9] Carlström M, Wilcox CS, Arendshorst WJ. Renal autoregulation in health and disease[J]. Physiol Rev, 2015, 95: 405-511. doi:  10.1152/physrev.00042.2012
    [10] Stainsby WN, Renkin EM. Autoregulation of blood flow in resting skeletal muscle[J]. Am J Physiol, 1961, 201: 117-122. doi:  10.1152/ajplegacy.1961.201.1.117
    [11] Takala J. Determinants of splanchnic blood flow[J]. Br J Anaesth, 1996, 77: 50-58. doi:  10.1093/bja/77.1.50
    [12] Kvietys PR, Miller T, Granger DN. Intrinsic control of colonic blood flow and oxygenation[J]. Am J Physiol, 1980, 238: G478-G484.
    [13] Nakano M, Nomura Y, Whitman G, et al. Cerebral autoregu-lation in the operating room and intensive care unit after cardiac surgery[J]. Br J Anaesth, 2021, 126: 967-974. doi:  10.1016/j.bja.2020.12.043
    [14] Ono M, Arnaoutakis GJ, Fine DM, et al. Blood pressure excursions below the cerebral autoregulation threshold during cardiac surgery are associated with acute kidney injury[J]. Crit Care Med, 2013, 41: 464-471. doi:  10.1097/CCM.0b013e31826ab3a1
    [15] Evans L, Rhodes A, Alhazzani W, et al. Surviving sepsis compaign: international guidelines for management of sepsis and septic shock 2021[J]. Intensive Care Med, 2021, 47: 1181-1247. doi:  10.1007/s00134-021-06506-y
    [16] Aaslid R, Lindegaard KF, Sorteberg W, et al. Cerebral autoregulation dynamics in humans[J]. Stroke, 1989, 20: 45-52. doi:  10.1161/01.STR.20.1.45
    [17] Depreitere B, MeyfroidtG, Guiza F, et al. What do we mean by cerebral perfusion pressure?[J]. Acta Neurochir Suppl, 2018, 126: 201-203.
    [18] Asfar P, Meziani F, Hamel JF, et al. High versus low blood-pressure target in patients with septic shock[J]. N Engl J Med, 2014, 370: 1583-1593. doi:  10.1056/NEJMoa1312173
    [19] Grenier N, Cornelis F, Le Bras Y, et al. Perfusion imaging in renal diseases[J]. Diagn Interv Imaging, 2013, 94: 1313-1322. doi:  10.1016/j.diii.2013.08.018
    [20] Beloncle F, Rousseau N, Hamel JF, et al. Determinants of Doppler-based renal resistive index in patients with septic shock: impact of hemodynamic parameters, acute kidney injury and predisposing factors[J]. Ann Intensive Care, 2019, 9: 51. doi:  10.1186/s13613-019-0525-8
    [21] Rhee CJ, Kibler KK, Easley RB, et al. Renovascular reactivity measured by near-infrared spectroscopy[J]. J Appl Physiol, 2012, 113: 307-314. doi:  10.1152/japplphysiol.00024.2012
    [22] Post EH, Vincent JL. Renal autoregulation and blood pressure management in circulatory shock[J]. Crit Care, 2018, 22: 81. doi:  10.1186/s13054-018-1962-8
    [23] Nygren A, Thoren A, Ricksten SE. Norepinephrine and intestinal mucosal perfusion in vasodilatory shock after cardiac surgery[J]. Shock, 2007, 28: 536-543. doi:  10.1097/shk.0b013e318063e71f
    [24] Hiltebrand LB, Krejci V, tenHoevel ME, et al. Redistribu-tion of microcirculatory blood flow within the intestinal wall during sepsis and general anesthesia[J]. Anesthesiology, 2003, 98: 658-669. doi:  10.1097/00000542-200303000-00014
    [25] Leithe ME, Margorien RD, Hermiller JB, et al. Relation-ship between central hemodynamics and regional blood flow in normal subjects and in patients with congestive heart failure[J]. Circulation, 1984, 69: 57-64. doi:  10.1161/01.CIR.69.1.57
    [26] Wong A, Yusuf GT, Malbrain MLNG. Future developments in the imaging of the gastrointestinal tract: the role of ultrasound[J]. Curr Opin Crit Care, 2021, 27: 147-156. doi:  10.1097/MCC.0000000000000815
    [27] Guinot PG, Abou-Arab O, Longrois D, et al. Right ventricu-lar systolic dysfunction and vena cava dilatation precede alteration of renal function in adult patients undergoing cardiac surgery: An observational study[J]. Eur J Anaesthesiol, 2015, 32: 535-542. doi:  10.1097/EJA.0000000000000149
    [28] 刘大为, 王小亭, 张宏民, 等. 重症血流动力学治疗——北京共识[J]. 中华内科杂志, 2015, 54: 248-271. doi:  10.3760/cma.j.issn.0578-1426.2015.03.021
    [29] Tang WH, Kitai T. Intrarenal Venous Flow: A Window Into the Congestive Kidney Failure Phenotype of Heart Failure?[J]. JACC Heart Failure, 2016, 4: 683-686. doi:  10.1016/j.jchf.2016.05.009
    [30] Desser TS, Sze DY, Jeffrey RB. Imaging and Intervention in the Hepatic Veins[J]. AJR Am J Roentgenol, 2003, 180: 1583-1591. doi:  10.2214/ajr.180.6.1801583
    [31] Xanthopoulos A, Starling RC, Kitai T, et al. Heart Failure and Liver Disease: Cardiohepatic Interactions[J]. JACC Heart Fail, 2019, 7: 87-97. doi:  10.1016/j.jchf.2018.10.007
    [32] Pettey G, Hermansen JL, Nel S, et al. Ultrasound Hepatic Vein Ratios Are Associated With the Development of Acute Kidney Injury After Cardiac Surgery[J]. J Cardiothoracic Vasc Anesth, 2022, 36: 1326-1335. doi:  10.1053/j.jvca.2021.07.039
    [33] Eljaiek R, Cavayas YA, Rodrigue E, et al. High postoperative portal venous flow pulsatility indicates right ventricular dysfunction and predicts complications in cardiac surgery patients[J]. Br J Anaesth, 2019, 122: 206-214. doi:  10.1016/j.bja.2018.09.028
    [34] Styczynski G, Milewska A, Marczewska M, et al. Echocardiographic Correlates of Abnormal Liver Tests in Patients with Exacerbation of Chronic Heart Failure[J]. J Am Soc Echocardiogr, 2016, 29: 132-139. doi:  10.1016/j.echo.2015.09.012
    [35] Denault AY, Beaubien-Souligny W, Elmi-Sarabi M, et al. Clinical Significance of Portal Hypertension Diagnosed With Bedside Ultrasound After Cardiac Surgery[J]. Anesth Analg, 2017, 124: 1109-1115. doi:  10.1213/ANE.0000000000001812
    [36] Husain-Syed F, Birk HW, Ronco C, et al. Doppler-Derived Renal Venous Stasis Index in the Prognosis of Right Heart Failure[J]. J Am Heart Assoc, 2019, 8: e013584. doi:  10.1161/JAHA.119.013584
    [37] Beaubien-Souligny W, Denault AY. Real-Time Assessment of Renal Venous Flow by Transesophageal Echography During Cardiac Surgery[J]. A A Pract, 2019, 12: 30-32. doi:  10.1213/XAA.0000000000000841
    [38] Ter Maaten JM, Dauw J, Martens P, et al. The Effect of Decongestion on Intrarenal Venous Flow Patterns in Patients With Acute Heart Failure[J]. J Card Fail, 2021, 27: 29-34. doi:  10.1016/j.cardfail.2020.09.003
    [39] Beaubien-Souligny W, Rola P, Haycock K, et al. Quantifying systemic congestion with Point-Of-Care ultrasound: development of the venous excess ultrasound grading system[J]. Ultrasound J, 2020, 12: 16. doi:  10.1186/s13089-020-00163-w
    [40] Spiegel R, Teeter W, Sullivan S, et al. The use of venous Doppler to predict adverse kidney events in a general ICU cohort[J]. Crit Care, 2020, 24: 615. doi:  10.1186/s13054-020-03330-6
    [41] Beaubien-Souligny W, Eljaiek R, Fortier A, et al. The Association Between Pulsatile Portal Flow and Acute Kidney Injury after Cardiac Surgery: A Retrospective Cohort Study[J]. J Cardiothoracic Vasc Anesth, 2018, 32: 1780-1787. doi:  10.1053/j.jvca.2017.11.030
    [42] Bhardwaj V, Vikneswaran G, Rola P, et al. Combination of Inferior Vena Cava Diameter, Hepatic Venous Flow, and Portal Vein Pulsatility Index: Venous Excess Ultrasound Score (VEXUS Score) in Predicting Acute Kidney Injury in Patients with Cardiorenal Syndrome: A Prospective Cohort Study[J]. Indian J Crit Care Med, 2020, 24: 783-789. doi:  10.5005/jp-journals-10071-23570
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)

    Article Metrics

    Article views (2764) PDF downloads(210) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return