Volume 13 Issue 5
Sep.  2022
Turn off MathJax
Article Contents
WU Nan, LI Guozhuang, WU Zhihong, ZHANG Jianguo, QIU Guixing. TBX6-associated Congenital Scoliosis: A New Congenital Scoliosis Subtype Defined by Chinese[J]. Medical Journal of Peking Union Medical College Hospital, 2022, 13(5): 719-724. doi: 10.12290/xhyxzz.2022-0339
Citation: WU Nan, LI Guozhuang, WU Zhihong, ZHANG Jianguo, QIU Guixing. TBX6-associated Congenital Scoliosis: A New Congenital Scoliosis Subtype Defined by Chinese[J]. Medical Journal of Peking Union Medical College Hospital, 2022, 13(5): 719-724. doi: 10.12290/xhyxzz.2022-0339

TBX6-associated Congenital Scoliosis: A New Congenital Scoliosis Subtype Defined by Chinese

doi: 10.12290/xhyxzz.2022-0339
Funds:

CAMS Innovation Fund for Medical Sciences 2021-I2M-1-051

CAMS Innovation Fund for Medical Sciences 2021-I2M-1-052

CAMS Innovation Fund for Medical Sciences 2020-I2M-C & T-B-030

Non-profit Central Research Institute Fund of Chinese Academy of Medical Sciences 2019PT320025

More Information
  • Corresponding author: WU Nan, E-mail: dr.wunan@pumch.cn; QIU Guixing, E-mail: qguixing@126.com
  • Received Date: 2022-06-20
  • Accepted Date: 2022-07-13
  • Available Online: 2022-08-02
  • Publish Date: 2022-09-30
  • Congenital scoliosis (CS) is a congenital spinal deformity that originates from abnormal spinal development in embryo. Characterized by rapid progression, severe deformity, and many complications, CS brings heavy economic and mental burden to patients and their families. At present, there is no good treatment for the etiology of spinal deformity. Due to the lack of early prediction methods, patients are often not detected until the appearance of malformation, and the treatment is mainly passive, conservative or traumatic treatment with braces or surgery to control the progression of the disease. Therefore, the exploration of early diagnosis methods and effective etiological intervention targets for spinal deformity is currently an international research hotspot. The orthopaedic team of Peking Union Medical College Hospital, focusing on the molecular genetics research and clinical application of CS, has built the world leading genetic research system of skeletal deformity. Through a multi-center large-scale cohort study, the team has found and demonstrated that compound inheritance of a rare null mutation and a hypomorphic allele of TBX6 led to CS. A set of genotype-phenotype integrated analysis method has been established, which successfully defined a new subtype of CS (TBX6-associated congenital scoliosis, TACS) and realized accurate clinical prediction of this unique subtype. With the establishment of the first genetics clinic of skeletal deformity in China, the clinical transformation of research results can thus be realized, providing a new paradigm for the etiology research and clinical application of skeletal deformity.
  • loading
  • [1] Beals RK, Robbins JR, Rolfe B. Anomalies associated with vertebral malformations[J]. Spine, 1993, 18: 1329-1332. doi:  10.1097/00007632-199308000-00012
    [2] Johal J, Loukas M, Fisahn C, et al. Hemivertebrae: a comprehensive review of embryology, imaging, classification, and management[J]. Childs Nerv Syst, 2016, 32: 2105-2109. doi:  10.1007/s00381-016-3195-y
    [3] 国家卫生健康委员会, 科学技术部, 工业和信息化部, 等. 关于公布第一批罕见病目录的通知[EB/OL]. (2018-05-11)[2022-05-01]. http://www.nhc.gov.cn/cms-search/xxgk/getManuscriptXxgk.htm?id=393a9a37f39c4b458d6e830f40a4bb99.
    [4] Winter RB, Moe JH, Eilers VE. Congenital Scoliosis A Study of 234 Patients Treated and Untreated: PART Ⅰ: NATURAL HISTORY[J]. JBJS, 1968, 50: 1-15. doi:  10.2106/00004623-196850010-00001
    [5] Giampietro PF, Dunwoodie SL, Kusumi K, et al. Progress in the understanding of the genetic etiology of vertebral segmentation disorders in humans[J]. Ann N Y Acad Sci, 2009, 1151: 38-67. doi:  10.1111/j.1749-6632.2008.03452.x
    [6] Reeves HA. Bodily deformities and their treatment[J]. Bristol Med Chir J, 1885, 3: 200-201.
    [7] Cooke J, Zeeman EC. A clock and wavefront model for control of the number of repeated structures during animal morphogenesis[J]. J Theor Biol, 1976, 58: 455-476. doi:  10.1016/S0022-5193(76)80131-2
    [8] Pourquie O. The vertebrate segmentation clock[J]. J Anat, 2001, 199: 169-175. doi:  10.1046/j.1469-7580.2001.19910169.x
    [9] Sato Y, Yasuda K, Takahashi Y. Morphological boundary forms by a novel inductive event mediated by Lunatic fringe and Notch during somitic segmentation[J]. Development, 2002, 129: 3633-3644. doi:  10.1242/dev.129.15.3633
    [10] Papapetrou C, Putt W, Fox M, et al. The human TBX6 gene: cloning and assignment to chromosome 16p11.2[J]. Genomics, 1999, 55: 238-241. doi:  10.1006/geno.1998.5646
    [11] Chapman DL, Papaioannou VE. Three neural tubes in mouse embryos with mutations in the T-box gene Tbx6[J]. Nature, 1998, 391: 695-697. doi:  10.1038/35624
    [12] Hubaud A, Pourquié O. Signalling dynamics in vertebrate segmentation[J]. Nat Rev Mol Cell Biol, 2014, 15: 709-721. doi:  10.1038/nrm3891
    [13] Chapman DL, Agulnik I, Hancock S, et al. Tbx6, a mouse T-Box gene implicated in paraxial mesoderm formation at gastrulation[J]. Dev Biol, 1996, 180: 534-542. doi:  10.1006/dbio.1996.0326
    [14] Fei Q, Wu Z, Wang H, et al. The association analysis of TBX6 polymorphism with susceptibility to congenital scoliosis in a Chinese Han population[J]. Spine, 2010, 35: 983-988. doi:  10.1097/BRS.0b013e3181bc963c
    [15] Turnpenny PD, Sloman M, Dunwoodie S. Spondylocostal Dysostosis, Autosomal Recessive[M/OL]. (2017-12-21)[2022-05-01]. https://www.ncbi.nlm.nih.gov/books/NBK8828/pdf/Bookshelf_NBK8828.pdf.
    [16] Shen Y, Chen X, Wang L, et al. Intra-family phenotypic heterogeneity of 16p11.2 deletion carriers in a three-generation Chinese family[J]. Am J Med Genet B Neuropsychiatr Genet, 2011, 156: 225-232. doi:  10.1002/ajmg.b.31147
    [17] Wu N, Ming X, Xiao J, et al. TBX6 null variants and a common hypomorphic allele in congenital scoliosis[J]. N Engl J Med, 2015, 372: 341-350. doi:  10.1056/NEJMoa1406829
    [18] Liu J, Wu N, Deciphering Disorders Involving Scoliosis and COmorbidities (DISCO) study, et al. TBX6-associated congenital scoliosis (TACS) as a clinically distinguishable subtype of congenital scoliosis: further evidence supporting the compound inheritance and TBX6 gene dosage model[J]. Genet Med, 2019, 21: 1548-1558. doi:  10.1038/s41436-018-0377-x
    [19] Lefebvre M, Duffourd Y, Jouan T, et al. Autosomal recessive variations of TBX6, from congenital scoliosis to spondylocostal dysostosis[J]. Clin Genet, 2017, 91: 908-912. doi:  10.1111/cge.12918
    [20] Takeda K, Kou I, Kawakami N, et al. Compound Heterozygosity for Null Mutations and a Common Hypomorphic Risk Haplotype in TBX6 Causes Congenital Scoliosis[J]. Hum Mutat, 2017, 38: 317-323. doi:  10.1002/humu.23168
    [21] Otomo N, Takeda K, Kawai S, et al. Bi-allelic loss of function variants of TBX6 causes a spectrum of malformation of spine and rib including congenital scoliosis and spondylocostal dysostosis[J]. J Med Genet, 2019, 56: 622-628. doi:  10.1136/jmedgenet-2018-105920
    [22] Chen W, Lin J, Wang L, et al. TBX6 missense variants expand the mutational spectrum in a non-Mendelian inheritance disease[J]. Hum Mutat, 2020, 41: 182-195. doi:  10.1002/humu.23907
    [23] Feng X, Cheung JPY, Je JSH, et al. Genetic variants of TBX6 and TBXT identified in patients with congenital scoliosis in Southern China[J]. J Orthop Res, 2021, 39: 971-988. doi:  10.1002/jor.24805
    [24] Yang N, Wu N, Zhang L, et al. TBX6 compound inheritance leads to congenital vertebral malformations in humans and mice[J]. Hum Mol Genet, 2019, 28: 539-547. doi:  10.1093/hmg/ddy358
    [25] Ren X, Yang N, Wu N, et al. Increased TBX6 gene dosages induce congenital cervical vertebral malformations in humans and mice[J]. J Med Genet, 2020, 57: 371-379. doi:  10.1136/jmedgenet-2019-106333
    [26] Chen Z, Yan Z, Yu C, et al. Cost-effectiveness analysis of using the TBX6-associated congenital scoliosis risk score (TACScore) in genetic diagnosis of congenital scoliosis[J]. Orphanet J Rare Dis, 2020, 15: 250. doi:  10.1186/s13023-020-01537-y
    [27] Chen Z, Zheng Y, Yang Y, et al. PhenoApt leverages clinical expertise to prioritize candidate genes via machine learning[J]. Am J Hum Genet, 2022, 109: 270-281. doi:  10.1016/j.ajhg.2021.12.008
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1066) PDF downloads(128) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return