Volume 13 Issue 5
Sep.  2022
Turn off MathJax
Article Contents
LUO Xin, PANG Kun, CHEN Jianxiong, WANG Hongzhe, XU Xinjie, LI Bing, JIA Xinmiao, YOU Xin. Differences of Intestinal Flora in Children with Autism Spectrum Disorder with Different Levels of Serum Total 25-hydroxyvitamin D[J]. Medical Journal of Peking Union Medical College Hospital, 2022, 13(5): 812-820. doi: 10.12290/xhyxzz.2022-0254
Citation: LUO Xin, PANG Kun, CHEN Jianxiong, WANG Hongzhe, XU Xinjie, LI Bing, JIA Xinmiao, YOU Xin. Differences of Intestinal Flora in Children with Autism Spectrum Disorder with Different Levels of Serum Total 25-hydroxyvitamin D[J]. Medical Journal of Peking Union Medical College Hospital, 2022, 13(5): 812-820. doi: 10.12290/xhyxzz.2022-0254

Differences of Intestinal Flora in Children with Autism Spectrum Disorder with Different Levels of Serum Total 25-hydroxyvitamin D

doi: 10.12290/xhyxzz.2022-0254
Funds:

CAMS Innovation Fund for Medical Sciences 2017-I2M-3-017

Non-profit Central Research Institute Fund of Chinese Academy of Medical Sciences 2019XK320030

More Information
  • Corresponding author: JIA Xinmiao, E-mail: jiaxinmiaohappy@126.com; YOU Xin, E-mail: youxin@pumch.cn
  • Received Date: 2022-05-13
  • Accepted Date: 2022-06-27
  • Available Online: 2022-08-02
  • Publish Date: 2022-09-30
  •   Objective  To investigate the differences of intestinal flora in Vitamin D adequacy and deficiency groups of children with autism spectrum disorder(ASD) and the correlation between serum total 25-hydroxyvitamin D [T-25(OH)D] levels and intestinal flora.  Methods  ASD children who attended the outpatient clinic of the department of Rheumatology and Clinical Immunology of Peking Union Medical College Hospital during October 2009 and February 2022 were retrospectively included in the study. According to the serum T-25(OH)D levels, they were divided into Vitamin D adequacy group[T-25(OH)D > 30 μg/L], Vitamin D insufficiency group[20 μg/L≤T-25(OH)D≤30 μg/L] and Vitamin D deficiency group[T-25(OH)D < 20 μg/L].Serum T-25(OH)D levels were measured using liquid chromatography-tandem mass spectrometry. Human gut metagenome data from these children with ASD were analyzed using bioinformatics methods.  Results  46 children with ASD who met the inclusion and exclusion criteria were included in the study. The numbers of patients in Vitamin D adequacy group, Vitamin D insufficiency group and Vitamin D deficiency group were respectively 15, 16 and 15. Linear discriminant analysis revealed that the bacteria abundance of Bilophila wadsworthia, Adlercreutzia equolifaciens, Asaccharobacter celatus and Escherichia coli were significantly enriched, while the bacteria abundance of Bacteroides fragilis and Hungatella hathewayi were significantly lower in the Vitamin D deficiency group. The relative abundance of Bilophila wadsworthia and Adlercreutzia equolifaciens were negatively correlated with serum T-25(OH)D levels(r=-0.45, fdr=0.055, P=0.002;r=-0.44, fdr=0.055, P=0.003), and the relative abundance of Bacteroides fragilis was positively correlated with serum T-25(OH)D levels (r=0.42, fdr=0.073, P=0.004).  Conclusions  Vitamin D deficiency in ASD may exacerbate ASD flora disorders, and decreased serum T-25(OH)D levels may facilitate potentially harmful bacteria but inhibit probiotic colonization. This study provides partial evidence that children with ASD should be actively supplemented with vitamin D.
  • loading
  • [1] 中华医学会儿科学分会发育行为学组, 中国医师协会儿科分会儿童保健专业委员会, 儿童孤独症诊断与防治技术和标准研究项目专家组. 孤独症谱系障碍儿童早期识别筛查和早期干预专家共识[J]. 中华儿科杂志, 2017, 55: 890-897. doi:  10.3760/cma.j.issn.0578-1310.2017.12.004
    [2] 中华医学会儿科学分会发育行为学组, 中国医师协会儿科分会儿童保健专业委员会, 儿童孤独症诊断与防治技术和标准研究项目专家组. 孤独症谱系障碍患儿常见共患问题的识别与处理原则[J]. 中华儿科杂志, 2018, 56: 174-178. doi:  10.3760/cma.j.issn.0578-1310.2018.03.004
    [3] Saurman V, Margolis KG, Luna RA. Autism Spectrum Disorder as a Brain-Gut-Microbiome Axis Disorder[J]. Dig Dis Sci, 2020, 65: 818-828. doi:  10.1007/s10620-020-06133-5
    [4] Cryan JF, O'riordan KJ, Cowan CSM, et al. The Microbiota-Gut-Brain Axis[J]. Physiol Rev, 2019, 99: 1877-2013. doi:  10.1152/physrev.00018.2018
    [5] Li N, Chen H, Cheng Y, et al. Fecal Microbiota Transplantation Relieves Gastrointestinal and Autism Symptoms by Improving the Gut Microbiota in an Open-Label Study[J]. Front Cell Infect Microbiol, 2021, 11: 759435. doi:  10.3389/fcimb.2021.759435
    [6] Murdaca G, Gerosa A, Paladin F, et al. Vitamin D and Microbiota: Is There a Link with Allergies?[J]. Int J Mol Sci, 2021, 22: 4288. doi:  10.3390/ijms22084288
    [7] Malaguarnera L. Vitamin D and microbiota: Two sides of the same coin in the immunomodulatory aspects[J]. Int Immunopharmacol, 2020, 79: 106112. doi:  10.1016/j.intimp.2019.106112
    [8] Wong M. What has happened in the last 50 years in immunology[J]. J Paediatr Child Health, 2015, 51: 135-139. doi:  10.1111/jpc.12834
    [9] Bellerba F, Muzio V, Gnagnarella P, et al. The Associa-tion between Vitamin D and Gut Microbiota: A Systematic Review of Human Studies[J]. Nutrients, 2021, 13: 3378. doi:  10.3390/nu13103378
    [10] Feng J, Shan L, Du L, et al. Clinical improvement following vitamin D3 supplementation in autism spectrum disorder[J]. Nutr Neurosci, 2017, 20: 284-290. doi:  10.1080/1028415X.2015.1123847
    [11] American Psychiatric Association. Diagnostic and statistical manual of mental disorders: DSM-5[M]. 5th ed. Washington DC: American Psychiatric Association, 2013: 50-59.
    [12] Holick MF, Binkley NC, Bischoff-Ferrari HA, et al. Evaluation, treatment, and prevention of vitamin D deficiency: an Endocrine Society clinical practice guideline[J]. J Clin Endocrinol Metab, 2011, 96: 1911-1930. doi:  10.1210/jc.2011-0385
    [13] Society for Adolescent Health and Medicine. Recommended vitamin D intake and management of low vitamin D status in adolescents: a position statement of the society for adolescent health and medicine[J]. J Adolesc Health, 2013, 52: 801-803. doi:  10.1016/j.jadohealth.2013.03.022
    [14] Yu S, Zhang R, Zhou W, et al. Is it necessary for all samples to quantify 25OHD2 and 25OHD3 using LC-MS/MS in clinical practice?[J]. Clin Chem Lab Med, 2018, 56: 273-277. doi:  10.1515/cclm-2017-0520
    [15] Krueger F. Trim Galore, V. 0.6.2[EB/OL]. (2019-05-08)[2022-05-10]. http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/.
    [16] Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2[J]. Nat Methods, 2012, 9: 357-359. doi:  10.1038/nmeth.1923
    [17] Danecek P, Bonfield JK, Liddle J, et al. Twelve years of SAMtools and BCFtools[J]. Gigascience, 2021, 10: giab008. doi:  10.1093/gigascience/giab008
    [18] Quinlan AR. BEDTools: the Swiss-army tool for genome feature analysis[J]. Curr Protoc Bioinform, 2014, 47: 11.12.1-11.12.34.
    [19] Casper J, Zweig AS, Villarreal C, et al. The UCSC genome browser database: 2018 update[J]. Nucleic Acids Res, 2018, 46: D762-D769. doi:  10.1093/nar/gkx1020
    [20] Beghini F, Mciver LJ, Blanco-Míguez A, et al. Integrat-ing taxonomic, functional, and strain-level profiling of diverse microbial communities with bioBakery 3[J]. Elife, 2021, 10: e65088. doi:  10.7554/eLife.65088
    [21] Segata N, Izard J, Waldron L, et al. Metagenomic biomarker discovery and explanation[J]. Genome Biol, 2011, 12: R60. doi:  10.1186/gb-2011-12-6-r60
    [22] Singh P, Kumar M, Al Khodor S. Vitamin D Deficiency in the Gulf Cooperation Council: Exploring the Triad of Genetic Predisposition, the Gut Microbiome and the Immune System[J]. Front Immunol, 2019, 10: 1042. doi:  10.3389/fimmu.2019.01042
    [23] Yamamoto E, Jørgensen TN. Immunological effects of vitamin D and their relations to autoimmunity[J]. J Autoimmun, 2019, 100: 7-16. doi:  10.1016/j.jaut.2019.03.002
    [24] Yamamoto EA, Jørgensen TN. Relationships between vitamin D, gut microbiome, and systemic autoimmunity[J]. Front Immunol, 2020, 10: 3141. doi:  10.3389/fimmu.2019.03141
    [25] Reboul E. Intestinal absorption of vitamin D: from the meal to the enterocyte[J]. Food Funct, 2015, 6: 356-362. doi:  10.1039/C4FO00579A
    [26] Bora SA, Kennett MJ, Smith PB, et al. The Gut Microbiota Regulates Endocrine Vitamin D Metabolism through Fibroblast Growth Factor 23[J]. Front Immunol, 2018, 9: 408. doi:  10.3389/fimmu.2018.00408
    [27] Leeming ER, Johnson AJ, Spector TD, et al. Effect of Diet on the Gut Microbiota: Rethinking Intervention Duration[J]. Nutrients, 2019, 11: 2862. doi:  10.3390/nu11122862
    [28] Saad K, Abdel-Rahman AA, Elserogy YM, et al. Vitamin D status in autism spectrum disorders and the efficacy of vitamin D supplementation in autistic children[J]. Nutr Neurosci, 2016, 19: 346-351. doi:  10.1179/1476830515Y.0000000019
    [29] Mazahery H, Conlon CA, Beck KL, et al. A randomised controlled trial of vitamin D and omega-3 long chain polyunsaturated fatty acids in the treatment of irritability and hyperactivity among children with autism spectrum disorder[J]. J Steroid Biochem Mol Biol, 2019, 187: 9-16. doi:  10.1016/j.jsbmb.2018.10.017
    [30] Caplan A, Walker L, Rasquin A. Development and Preliminary Validation of the Questionnaire on Pediatric Gastrointestinal Symptoms to Assess Functional Gastrointestinal Disorders in Children and Adolescents[J]. J Pediatr Gastroenterol Nutr, 2005, 41: 296-304. doi:  10.1097/01.mpg.0000172748.64103.33
    [31] Munk DD, Repp AC. Behavioral assessment of feeding problems of individuals with severe disabilities[J]. J Appl Behav Anal, 1994, 27: 241-250. doi:  10.1901/jaba.1994.27-241
    [32] Waite DW, Chuvochina M, Pelikan C, et al. Proposal to reclassify the proteobacterial classes Deltaproteobacteria and Oligoflexia, and the phylum Thermodesulfobacteria into four phyla reflecting major functional capabilities[J]. Int J Syst Evol Microbiol, 2020, 70: 5972-6016. doi:  10.1099/ijsem.0.004213
    [33] Pulikkan J, Maji A, Dhakan DB, et al. Gut microbial dysbiosis in Indian children with autism spectrum disorders[J]. Microb Ecol, 2018, 76: 1102-1114. doi:  10.1007/s00248-018-1176-2
    [34] Tomova A, Husarova V, Lakatosova S, et al. Gastrointestinal microbiota in children with autism in Slovakia[J]. Physiol Behav, 2015, 138: 179-187. doi:  10.1016/j.physbeh.2014.10.033
    [35] Liu S, Li E, Sun Z, et al. Altered gut microbiota and short chain fatty acids in Chinese children with autism spectrum disorder[J]. Sci Rep, 2019, 9: 287. doi:  10.1038/s41598-018-36430-z
    [36] Mitsui R, Ono S, Karaki S, et al. Neural and non-neural mediation of propionate-induced contractile responses in the rat distal colon[J]. Neurogastroenterol Motil, 2005, 17: 585-594. doi:  10.1111/j.1365-2982.2005.00669.x
    [37] Murros KE. Hydrogen Sulfide Produced by Gut Bacteria May Induce Parkinson's Disease[J]. Cells, 2022, 11: 978. doi:  10.3390/cells11060978
    [38] Feng Z, Long W, Hao B, et al. A human stool-derived Bilophila wadsworthia strain caused systemic inflammation in specific-pathogen-free mice[J]. Gut Pathogens, 2017, 9: 59. doi:  10.1186/s13099-017-0208-7
    [39] Laue HE, Korrick SA, Baker ER, et al. Prospective associations of the infant gut microbiome and microbial function with social behaviors related to autism at age 3 years[J]. Sci Rep, 2020, 10: 15515. doi:  10.1038/s41598-020-72386-9
    [40] Rosenfeld CS. Effects of phytoestrogens on the developing brain, gut microbiota, and risk for neurobehavioral disorders[J]. Front Nutr, 2019, 6: 142. doi:  10.3389/fnut.2019.00142
    [41] Gilad LA, Tirosh O, Schwartz B. Phytoestrogens regulate transcription and translation of vitamin D receptor in colon cancer cells[J]. J Endocrinol, 2006, 191: 387-398. doi:  10.1677/joe.1.06930
    [42] Assa A, Vong L, Pinnell LJ, et al. Vitamin D Deficiency Predisposes to Adherent-invasive Escherichia coli-induced Barrier Dysfunction and Experimental Colonic Injury[J]. Inflamm Bowel Dis, 2015, 21: 297-306. doi:  10.1097/MIB.0000000000000282
    [43] Zou R, Xu F, Wang Y, et al. Changes in the gut microbiota of children with autism spectrum disorder[J]. Autism Res, 2020, 13: 1614-1625. doi:  10.1002/aur.2358
    [44] Hsiao EY, Mcbride SW, Hsien S, et al. Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders[J]. Cell, 2013, 155: 1451-1463. doi:  10.1016/j.cell.2013.11.024
    [45] Sun J. Dietary vitamin D, vitamin D receptor, and microbiome[J]. Curr Opin Clin Nutr Metab Care, 2018, 21: 471-474. doi:  10.1097/MCO.0000000000000516
    [46] Kaur S, Yawar M, Kumar PA, et al. Hungatella effluvii gen. nov., sp. nov., an obligately anaerobic bacterium isolated from an effluent treatment plant, and reclassification of Clostridium hathewayi as Hungatella hathewayi gen. nov., comb. nov[J]. Int J Syst Evol Microbiol, 2014, 64: 710-718. doi:  10.1099/ijs.0.056986-0
    [47] Ohara T. Identification of the microbial diversity after fecal microbiota transplantation therapy for chronic intractable constipation using 16s rRNA amplicon sequencing[J]. PLoS One, 2019, 14: e0214085. doi:  10.1371/journal.pone.0214085
    [48] Chan CWH, Leung TF, Choi KC, et al. Association of early-life gut microbiome and lifestyle factors in the development of eczema in Hong Kong infants[J]. Exp Dermatol, 2021, 30: 859-864. doi:  10.1111/exd.14280
    [49] Ooi JH, Li Y, Rogers CJ, et al. Vitamin D regulates the gut microbiome and protects mice from dextran sodium sulfate-induced colitis[J]. J Nutr, 2013, 143: 1679-1686. doi:  10.3945/jn.113.180794
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(2)

    Article Metrics

    Article views (2679) PDF downloads(102) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return