Volume 13 Issue 6
Nov.  2022
Turn off MathJax
Article Contents
CAO Jun, QIN Jinmei, XUE Weizhen. Recent Advances in the Pathogenesis of Coronary Microvascular Disease: The role of Inflammatory Reactions[J]. Medical Journal of Peking Union Medical College Hospital, 2022, 13(6): 1057-1063. doi: 10.12290/xhyxzz.2021-0782
Citation: CAO Jun, QIN Jinmei, XUE Weizhen. Recent Advances in the Pathogenesis of Coronary Microvascular Disease: The role of Inflammatory Reactions[J]. Medical Journal of Peking Union Medical College Hospital, 2022, 13(6): 1057-1063. doi: 10.12290/xhyxzz.2021-0782

Recent Advances in the Pathogenesis of Coronary Microvascular Disease: The role of Inflammatory Reactions

doi: 10.12290/xhyxzz.2021-0782
Funds:

Scientific Research Project of Health Commission of Shanxi Province 2017140

More Information
  • Corresponding author: XUE Weizhen, E-mail: tyby6387@163.com
  • Received Date: 2021-12-10
  • Accepted Date: 2022-01-11
  • Available Online: 2022-11-07
  • Publish Date: 2022-11-30
  • Coronary microvascular disease(CMVD)is the main cause of myocardial ischemia in patients with non-obstructive coronary artery disease. However, there is still a lack of comprehensive understanding of its pathophysiological mechanism due to the hidden pathogenesis and complex etiologies, which greatly restricts its clinical diagnosis and treatment. The injury of coronary artery microvascular endothelial cells is central to the induction of CMVD, and various inflammatory factors can participate in the pathogenesis of CMVD through the endothelial cell injury pathway. This article mainly reviews the possible mechanisms of inflammatory response in CMVD, in the hope of providing reference for the diagnosis, treatment and prevention of CMVD.
  • loading
  • [1] 张运, 陈韵岱, 傅向华, 等. 冠状动脉微血管疾病诊断和治疗的中国专家共识[J]. 中国循环杂志, 2017, 32: 421-430. doi:  10.3969/j.issn.1000-3614.2017.05.003

    Zheng Y, Chen YD, Fu XH, et al. Chinese expert consensus on the diagnosis and treatment of coronary microvascular diseases[J]. Zhongguo Xunhuan Zazhi, 2017, 32: 421-430. doi:  10.3969/j.issn.1000-3614.2017.05.003
    [2] Sara JD, Widmer RJ, Matsuzawa Y, et al. Prevalence of Coronary Microvascular Dysfunction Among Patients With Chest Pain and Nonobstructive Coronary Artery Disease[J]. JACC Cardiovasc Imaging, 2015, 8: 1445-1453.
    [3] Gehrie ER, Reynolds HR, Chen AY, et al. Characterization and outcomes of women and men with non-ST-segment elevation myocardial infarction and nonobstructive coronary artery disease: Results from the Can Rapid Risk Stratification of Unstable Angina Patients Suppress Adverse Outcomes with Early Implementation of the ACC/AHA Guidelines (CRUSADE) Quality Improvement Initiative[J]. Am Heart J 2009, 158: 688-694. doi:  10.1016/j.ahj.2009.08.004
    [4] Zhou W, Lee J, Leung ST, et al. Long-Term Prognosis of Patients With Coronary Microvascular Disease Using Stress Perfusion Cardiac Magnetic Resonance[J]. JACC Cardiovasc Imaging, 2021, 14: 602-611. doi:  10.1016/j.jcmg.2020.09.034
    [5] Siasos G, Tsigkou V, Zaromytidou M, et al. Role of local coronary blood flow patterns and shear stress on the development of microvascular and epicardial endothelial dysfunction and coronary plaque[J]. Curr Opin Cardiol, 2018, 33: 638-644. doi:  10.1097/HCO.0000000000000571
    [6] Niccoli G, Scalone G, Lerman A, et al. Coronary microvascular obstruction in acute myocardial infarction[J]. Eur Heart J, 2016, 37: 1024-1033. doi:  10.1093/eurheartj/ehv484
    [7] Del Buono MG, Montone RA, Camilli M, et al. Coronary Microvascular Dysfunction Across the Spectrum of Cardiovascular Diseases: JACC State-of-the-Art Review[J]. J Am Coll Cardiol, 2021, 78: 1352-1371. doi:  10.1016/j.jacc.2021.07.042
    [8] Masi S, Rizzoni D, Taddei S, et al. Assessment and pathophysiology of microvascular disease: recent progress and clinical implications[J]. Eur Heart J, 2021, 42: 2590-2604. doi:  10.1093/eurheartj/ehaa857
    [9] Gurzau D, Sitar-Taut A, Caloian B, et al. The Role of IL-6 and ET-1 in the Diagnosis of Coronary MicroVascular Disease in Women[J]. J Pers Med, 2021, 11: 965. doi:  10.3390/jpm11100965
    [10] Ovchinnikov AG, Arefieva TI, Potekhina AV, et al. The Molecular and Cellular Mechanisms Associated with a Microvascular Inflammation in the Pathogenesis of Heart Failure with Preserved Ejection Fraction[J]. Acta Naturae, 2020, 12: 40-51. doi:  10.32607/actanaturae.11154
    [11] Ligthart S, Marzi C, Aslibekyan S, et al. DNA methylation signatures of chronic low-grade inflammation are associated with complex diseases[J]. Genome Biol, 2016, 17: 255. doi:  10.1186/s13059-016-1119-5
    [12] Paulus WJ, Tschope C. A novel paradigm for heart failure with preserved ejection fraction: comorbidities drive myocardial dysfunction and remodeling through coronary microvascular endothelial inflammation[J]. J Am Coll Cardiol, 2013, 62: 263-271. doi:  10.1016/j.jacc.2013.02.092
    [13] Furman D, Campisi J, Verdin E, et al. Chronic inflamma-tion in the etiology of disease across the life span[J]. Nat Med, 2019, 25: 1822-1832. doi:  10.1038/s41591-019-0675-0
    [14] Chae WR, Nübel J, Baumert J, et al. Association of depression and obesity with C-reactive protein in Germany: A large nationally representative study[J]. Brain Behav Immun, 2022, 103: 223-231. doi:  10.1016/j.bbi.2022.04.024
    [15] Recio-Mayoral A, Rimoldi OE, Camici PG, et al. Inflammation and microvascular dysfunction in cardiac syndrome X patients without conventional risk factors for coronary artery disease[J]. JACC Cardiovasc Imaging, 2013, 6: 660-667. doi:  10.1016/j.jcmg.2012.12.011
    [16] Bajaj NS, Osborne MT, Gupta A, et al. Coronary Microvascular Dysfunction and Cardiovascular Risk in Obese Patients[J]. J Am Coll Cardiol, 2018, 72: 707-717. doi:  10.1016/j.jacc.2018.05.049
    [17] Selthofer-Relatić K, Bošnjak I, Kibel A, et al. Obesity Related Coronary Microvascular Dysfunction: From Basic to Clinical Practice[J]. Cardiol Res Pract, 2016, 2016: 8173816.
    [18] Wang GR, Zhu Y, Halushka PV, et al. Mechanism of platelet inhibition by nitric oxide: in vivo phosphorylation of thromboxane receptor by cyclic GMP-dependent protein kinase[J]. Proc Natl Acad Sci U S A, 1998, 95: 4888-4893. doi:  10.1073/pnas.95.9.4888
    [19] Wenzl FA, Ambrosini S, Mohammed SA. Inflammation in Metabolic Cardiomyopathy[J]. Front Cardiovasc Med, 2021, 8: 742178. doi:  10.3389/fcvm.2021.742178
    [20] Tong DC, Whitbourn R, MacIsaac A, et al. High-Sensitivity C-Reactive Protein Is a Predictor of Coronary Microvascular Dysfunction in Patients with Ischemic Heart Disease[J]. Front Cardiovasc Med, 2017, 4: 81.
    [21] Aryan Z, Ghajar A, Faghihi-Kashani S, et al. Baseline High-Sensitivity C-Reactive Protein Predicts Macrovascular and Microvascular Complications of Type 2 Diabetes: A Population-Based Study[J]. Ann Nutr Metab, 2018, 72: 287-295. doi:  10.1159/000488537
    [22] Candela J, Wang R, White C. Microvascular Endothelial Dysfunction in Obesity Is Driven by Macrophage-Dependent Hydrogen Sulfide Depletion[J]. Arterioscler Thromb Vasc Biol, 2017, 37: 889-899. doi:  10.1161/ATVBAHA.117.309138
    [23] Tracy EP, Hughes W, Beare JE, et al. Aging-Induced Impairment of Vascular Function: Mitochondrial Redox Contributions and Physiological/Clinical Implications[J]. Antioxid Redox Signal, 2021, 35: 974-1015. doi:  10.1089/ars.2021.0031
    [24] Barkaway A, Rolas L, Joulia R, et al. Age-related changes in the local milieu of inflamed tissues cause aberrant neutrophil trafficking and subsequent remote organ damage[J]. Immunity, 2021, 54: 1494-1510. doi:  10.1016/j.immuni.2021.04.025
    [25] Nikolich-Zugich J. The twilight of immunity: emerging concepts in aging of the immune system[J]. Nat Immunol, 2018, 19: 1146.
    [26] Rowe G, Tracy E, Beare JE, et al. Cell therapy rescues aging-induced beta-1 adrenergic receptor and GRK2 dysfunc-tion in the coronary microcirculation[J]. Geroscience, 2021, 44: 329-348.
    [27] Manini TM, Anton SD, Beavers DP, et al. ENabling Reduction of Low-grade Inflammation in SEniors Pilot Study: Concept, Rationale, and Design[J]. J Am Geriatr Soc, 2017, 65: 1961-1968. doi:  10.1111/jgs.14965
    [28] Arora R, Van Theemsche KM, Van Remoortel S, et al. Constitutive, Basal, and β-Alanine-Mediated Activation of the Human Mas-Related G Protein-Coupled Receptor D Induces Release of the Inflammatory Cytokine IL-6 and Is Dependent on NF-κB Signaling[J]. Int J Mol Sci, 2021, 22: 13254. doi:  10.3390/ijms222413254
    [29] Calder PC. Marine omega-3 fatty acids and inflammatory processes: Effects, mechanisms and clinical relevance[J]. Biochim Biophys Acta, 2015, 1851: 469-484. doi:  10.1016/j.bbalip.2014.08.010
    [30] Teissier T, Boulanger E, Cox LS. Interconnections between Inflammageing and Immunosenescence during Ageing[J]. Cells, 2022, 11: 359. doi:  10.3390/cells11030359
    [31] Amor C, Feucht J, Leibold J, et al. Senolytic CAR T cells reverse senescence-associated pathologies[J]. Nature, 2020, 583: 127-132. doi:  10.1038/s41586-020-2403-9
    [32] Baar MP, Brandt RMC, Putavet DA, et al. Targeted Apoptosis of Senescent Cells Restores Tissue Homeostasis in Response to Chemotoxicity and Aging[J]. Cell, 2017, 169: 132-147. doi:  10.1016/j.cell.2017.02.031
    [33] Muñoz-Espín D, Rovira M, Galiana I, et al. A versatile drug delivery system targeting senescent cells[J]. EMBO Mol Med, 2018, 10: e9355.
    [34] Konst RE, Guzik TJ, Kaski JC, et al. The pathogenic role of coronary microvascular dysfunction in the setting of other cardiac or systemic conditions[J]. Cardiovasc Res, 2020, 116: 817-828. doi:  10.1093/cvr/cvaa009
    [35] Kuwahata S, Hamasaki S, Ishida S, et al. Effect of uric acid on coronary microvascular endothelial function in women: association with eGFR and ADMA[J]. J Atheroscler Thromb, 2010, 17: 259-269. doi:  10.5551/jat.1594
    [36] Prasad M, Matteson EL, Herrmann J, et al. Uric Acid Is Associated With Inflammation, Coronary Microvascular Dysfunction, and Adverse Outcomes in Postmenopausal Women[J]. Hypertension, 2017, 69: 236-242. doi:  10.1161/HYPERTENSIONAHA.116.08436
    [37] Kakuta K, Dohi K, Yamamoto T, et al. Coronary Microvascular Dysfunction Restored After Surgery in Inflammatory Bowel Disease: A Prospective Observational Study[J]. J Am Heart Assoc, 2021, 10: e19125.
    [38] Plazak W, Gryga K, Milewski M, et al. Association of heart structure and function abnormalities with laboratory findings in patients with systemic lupus erythematosus[J]. Lupus, 2011, 20: 936-944. doi:  10.1177/0961203311399607
    [39] Weber B, Stevens E, Barrett L. Coronary Microvascular Dysfunction in Systemic Lupus Erythematosus[J]. J Am Heart Assoc, 2021, 10: e018555. doi:  10.1161/JAHA.120.018555
    [40] Shin JI, Lee KH, Joo YH, et al. Inflammasomes and autoimmune and rheumatic diseases: A comprehensive review[J]. J Autoimmun, 2019, 103: 102299. doi:  10.1016/j.jaut.2019.06.010
    [41] Martinon F, Burns K, Tschopp J. The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta[J]. Mol Cell, 2002, 10: 417-426. doi:  10.1016/S1097-2765(02)00599-3
    [42] Zanatta E, Colombo C, D'Amico G, et al. Inflammation and Coronary Microvascular Dysfunction in Autoimmune Rheu-matic Diseases[J]. Int J Mol Sci, 2019, 20: 5563. doi:  10.3390/ijms20225563
    [43] He M, Liang X, He L, et al. Endothelial dysfunction in rheumatoid arthritis: the role of monocyte chemotactic protein-1-induced protein[J]. Arterioscler Thromb Vasc Biol, 2013, 33: 1384-1391. doi:  10.1161/ATVBAHA.113.301490
    [44] Zhang H, Yang K, Chen F, et al. Role of the CCL2-CCR2 axis in cardiovascular disease: Pathogenesis and clinical implications[J]. Front Immunol, 2022, 13: 975367. doi:  10.3389/fimmu.2022.975367
    [45] Jin Z, Zheng E, Sareli C, et al. Monocyte Chemotactic Protein-Induced Protein 1 (MCPIP-1): A Key Player of Host Defense and Immune Regulation[J]. Front Immunol, 2021, 12: 727861. doi:  10.3389/fimmu.2021.727861
    [46] Piaserico S, Osto E, Famoso G, et al. Long-term prognostic value of coronary flow reserve in psoriasis patients[J]. Atherosclerosis, 2019, 289: 57-63. doi:  10.1016/j.atherosclerosis.2019.08.009
    [47] Weber B, Perez-Chada LM, Divakaran S, et al. Coronary microvascular dysfunction in patients with psoriasis[J]. J Nucl Cardiol, 2020, 29: 37-42.
    [48] Garshick MS, Barrett TJ, Wechter T, et al. Inflammasome Signaling and Impaired Vascular Health in Psoriasis[J]. Arterioscler Thromb Vasc Biol, 2019, 39: 787-798. doi:  10.1161/ATVBAHA.118.312246
    [49] Piaserico S, Osto E, Famoso G, et al. Treatment with tumor necrosis factor inhibitors restores coronary microvascular function in young patients with severe psoriasis[J]. Atherosclerosis, 2016, 251: 25-30. doi:  10.1016/j.atherosclerosis.2016.05.036
    [50] Lockshin B, Balagula Y, Merola JF. Interleukin 17, inflammation, and cardiovascular risk in patients with psoriasis[J]. J Am Acad Dermatol, 2018, 79: 345-352. doi:  10.1016/j.jaad.2018.02.040
    [51] Guo J, Wei X, Li Q, et al. Single-cell RNA analysis on ACE2 expression provides insights into SARS-CoV-2 potential entry into the bloodstream and heart injury[J]. J Cell Physiol, 2020, 235: 9884-9894. doi:  10.1002/jcp.29802
    [52] Rasmi Y, Rouhrazi H, Khayati-Shal E, et al. Association of endothelial dysfunction and cytotoxin-associated gene A-positive Helicobacter pylori in patients with cardiac syndrome X[J]. Biomed J, 2016, 39: 339-345. doi:  10.1016/j.bj.2016.01.010
    [53] Temesgen GB, Menon M, Gizaw ST, et al. Evaluation of Lipid Profile and Inflammatory Marker in Patients with Gastric Helicobacter pylori Infection, Ethiopia[J]. Int J Gen Med, 2022, 15: 271-278. doi:  10.2147/IJGM.S345649
    [54] Zhang DH, Yuan C, Wang BB, et al. Helicobacter pylori Infection Maybe a Risk Factor for Cardiac Syndrome X[J]. Front Cardiovasc Med, 2022, 9: 823885. doi:  10.3389/fcvm.2022.823885
    [55] Tanaka T, Matsushita M, Oka Y, et al. Effect of Chlamydia pneumoniae infection on coronary flow reserve and intimal hyperplasia after stent implantation in patients with angina pectoris[J]. Cardiol, 2001, 38: 311.
    [56] Liuba P, Pesonen E, Paakkari I, et al. Acute Chlamydia pneumoniae infection causes coronary endothelial dysfunction in pigs[J]. Atherosclerosis, 2003, 167: 215-222. doi:  10.1016/S0021-9150(03)00019-4
    [57] Almeida NC, Queiroz MA, Lima SS, et al. Association of Chlamydia trachomatis, C. pneumoniae, and IL-6 and IL-8 Gene Alterations With Heart Diseases[J]. Front Immunol, 2019, 10: 87. doi:  10.3389/fimmu.2019.00087
    [58] Wagner J, Bojkova D, Shumliakivska M, et al. Increased susceptibility of human endothelial cells to infections by SARS-CoV-2 variants[J]. Basic Res Cardiol, 2021, 116: 42. doi:  10.1007/s00395-021-00882-8
    [59] Yin J, Wang S, Liu Y, et al. Coronary microvascular dys function pathophysiology in COVID-19[J]. Microcirculation, 2021, 28: e12718.
    [60] Henry BM, Vikse J, Benoit S, et al. Hyperinflammation and derangement of renin-angiotensin-aldosterone system in COVID-19: A novel hypothesis for clinically suspected hypercoagulopathy and microvascular immunothrombosis[J]. Clin Chim Acta, 2020, 507: 167-173. doi:  10.1016/j.cca.2020.04.027
    [61] Cenko E, Badimon L, Bugiardini R, et al. Cardiovascular disease and COVID-19: a consensus paper from the ESC Working Group on Coronary Pathophysiology & Microcirculation, ESC Working Group on Thrombosis and the Association for Acute CardioVascular Care (ACVC), in collaboration with the European Heart Rhythm Association (EHRA)[J]. Cardiovasc Res, 2021, 117: 2705-2729. doi:  10.1093/cvr/cvab298
    [62] Varga Z, Flammer AJ, Steiger P, et al. Endothelial cell infection and endotheliitis in COVID-19[J]. Lancet, 2020, 395: 1417-1418 doi:  10.1016/S0140-6736(20)30937-5
    [63] Guzik TJ, Mohiddin SA, Dimarco A, et al. COVID-19 and the cardiovascular system: implications for risk assessment, diagnosis, and treatment options[J]. Cardiovasc Res, 2020, 116: 1666-1687. doi:  10.1093/cvr/cvaa106
    [64] Rethy L, Feinstein MJ, Sinha A, et al. Coronary Microvascular Dysfunction in HIV: A Review[J]. J Am Heart Assoc, 2020, 9: e14018.
    [65] Kristoffersen US, Wiinberg N, Petersen CL, et al. Reduction in coronary and peripheral vasomotor function in patients with HIV after initiation of antiretroviral therapy: a longitudinal study with positron emission tomography and flow-mediated dilation[J]. Nucl Med Commun, 2010, 31: 874-880. doi:  10.1097/MNM.0b013e32833d82e6
    [66] Knudsen A, Thorsteinsson K, Christensen TE, et al. Cardiac Microvascular Dysfunction in Women Living With HIV Is Associated With Cytomegalovirus Immunoglobulin G[J]. Open Forum Infec Dis, 2018, 5: ofy205. doi:  10.1093/ofid/ofy205
    [67] Leucker TM, Weiss RG, Schär M, et al. Coronary Endothelial Dysfunction Is Associated With Elevated Serum PCSK9 Levels in People With HIV Independent of Low-Density Lipoprotein Cholesterol[J]. J Am Heart Assoc, 2018, 7: e9996.
    [68] Hileman CO, Funderburg NT. Inflammation, Immune Activation, and Antiretroviral Therapy in HIV[J]. Curr HIV/AIDS Rep, 2017, 14: 93-100. doi:  10.1007/s11904-017-0356-x
    [69] 靳刚强. 尼可地尔治疗微血管性心绞痛的疗效及其对血管内皮功能的影响[J]. 当代医学, 2016, 22: 131-132. https://www.cnki.com.cn/Article/CJFDTOTAL-DDYI201623091.htm

    Jin GQ. Effect of nicorandil on microvascular angina pectoris and its effect on vascular endothelial function[J]. Dangdai Yixue, 2016, 22: 131-132. https://www.cnki.com.cn/Article/CJFDTOTAL-DDYI201623091.htm
    [70] Luo WH, Guo Y, Huang JW, et al. Do Statins Have a Positive Impact on Patients with Coronary Microvascular Dysfunction on Long-Term Clinical Outcome? A Large Retrospective Cohort Study[J]. Biomed Res Int, 2019, 2019: 4069097.
    [71] Juni RP, Kuster DW, Goebel MM, et al. Cardiac Microvascular Endothelial Enhancement of Cardiomyocyte Function Is Impaired by Inflammation and Restored by Empagliflozin[J]. JACC Basic Transl Sci, 2019, 4: 575-591. doi:  10.1016/j.jacbts.2019.04.003
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (219) PDF downloads(48) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return