Volume 12 Issue 6
Nov.  2021
Turn off MathJax
Article Contents
Gynecological Oncology Society of Chinese Medical Association. Clinical Practice Guidelines for Immune Checkpoint Inhibitor Therapy in Gynecological Tumors[J]. Medical Journal of Peking Union Medical College Hospital, 2021, 12(6): 854-880. doi: 10.12290/xhyxzz.2021-0683
Citation: Gynecological Oncology Society of Chinese Medical Association. Clinical Practice Guidelines for Immune Checkpoint Inhibitor Therapy in Gynecological Tumors[J]. Medical Journal of Peking Union Medical College Hospital, 2021, 12(6): 854-880. doi: 10.12290/xhyxzz.2021-0683

Clinical Practice Guidelines for Immune Checkpoint Inhibitor Therapy in Gynecological Tumors

doi: 10.12290/xhyxzz.2021-0683
More Information

    Corresponding authors: KONG Beihua1, LIU Jihong2, XIE Xing3, MA Ding4.
    1. Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan 250012, China, E-mail: kongbeihua@sdu.edu.cn
    2. Department of Gynecologic Oncology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China, E-mail: liujh@sysucc.org.cn
    3. Women's Hopital, School of Medicine Zhejiang University, Hangzhou 310006, China, E-mail: xiex@zju.edu.cn
    4. Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430030, China, E-mail: dma@tjh.tjmu.edu.cn

  • Received Date: 2021-10-09
  • Accepted Date: 2021-10-13
  • Available Online: 2021-10-25
  • Publish Date: 2021-11-30
  • Immune checkpoint inhibitors (ICI) have shown efficacy for some patients with gynecological tumors, which are mainly used to treat persistent, recurrent, or metastatic patients. Immunotherapy with ICI has shown good objective responses and survival benefit in patients with endometrial cancer. However, the rate of response to immunotherapy in patients with ovarian cancer remains modest. Some patients with recurrent or resistant gestational trophoblastic neoplasia benefit from ICI. ICI often has optimal duration of response. Accurately evaluating the indications and responses, recognizing and managing immune-related adverse events are essential to ICI treatment. With regards to ICI, the clinical benefit of monotherapy is limited; however, combinations of ICI with other therapies may have clinical benefit.
  • loading
  • [1] Brunet JF, Denizot F, Luciani MF, et al. A new member of the immunoglobulin superfamily-CTLA-4[J]. Nature, 1987, 328: 267-270. doi:  10.1038/328267a0
    [2] Krummel MF, Allison JP. CD28 and CTLA-4 have opposing effects on the response of T cells to stimulation[J]. J Exp Med, 1995, 182: 459-465. doi:  10.1084/jem.182.2.459
    [3] Egen JG, Kuhns MS, Allison JP. CTLA-4: new insights into its biological function and use in tumor immunotherapy[J]. Nat Immunol, 2002, 3: 611-618. doi:  10.1038/ni0702-611
    [4] Ishida Y, Agata Y, Shibahara K, et al. Induced expression of PD-1, a novel member of the immunoglobulin gene super-family, upon programmed cell death[J]. EMBO J, 1992, 11: 3887-3895. doi:  10.1002/j.1460-2075.1992.tb05481.x
    [5] Nishimura H, Nose M, Hiai H, et al. Development of lupus-like autoimmune diseases by disruption of the PD-1 gene encoding an ITIM motif-carrying immunoreceptor[J]. Immunity, 1999, 11: 141-151. doi:  10.1016/S1074-7613(00)80089-8
    [6] Korman AJ, Peggs KS, Allison JP. Checkpoint blockade in cancer immunotherapy[J]. Adv Immunol, 2006, 90: 297-339. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1951510/pdf/nihms26747.pdf
    [7] Wei SC, Levine JH, Cogdill AP, et al. Distinct Cellular Mechanisms Underlie Anti-CTLA-4 and Anti-PD-1 Check-point Blockade[J]. Cell, 2017, 170: 1120-1133. doi:  10.1016/j.cell.2017.07.024
    [8] Anderson AC, Joller N, Kuchroo VK. Lag-3, Tim-3, and TIGIT: Co-inhibitory Receptors with Specialized Functions in Immune Regulation[J]. Immunity, 2016, 44: 989-1004. doi:  10.1016/j.immuni.2016.05.001
    [9] Duan J, Cui L, Zhao X, et al. Use of Immunotherapy With Programmed Cell Death 1 vs Programmed Cell Death Ligand 1 Inhibitors in Patients With Cancer: A Systematic Review and Meta-analysis[J]. JAMA Oncol, 2020, 6: 375-384. doi:  10.1001/jamaoncol.2019.5367
    [10] Schumacher TN, Schreiber RD. Neoantigens in cancer immunotherapy[J]. Science, 2015, 348: 69-74. doi:  10.1126/science.aaa4971
    [11] Gubin MM, Zhang X, Schuster H, et al. Checkpoint blockade cancer immunotherapy targets tumour-specific mutant antigens[J]. Nature, 2014, 515: 577-581. doi:  10.1038/nature13988
    [12] Kim JY, Kronbichler A, Eisenhut M, et al. Tumor Mutational Burden and Efficacy of Immune Checkpoint Inhibitors: A Systematic Review and Meta-Analysis[J]. Cancers (Basel), 2019, 11: 1798. doi:  10.3390/cancers11111798
    [13] Bhangoo MS, Boasberg P, Mehta P, et al. Tumor Mutational Burden Guides Therapy in a Treatment Refractory POLE-Mutant Uterine Carcinosarcoma[J]. Oncologist, 2018, 23: 518-523. doi:  10.1634/theoncologist.2017-0342
    [14] Asaoka Y, Ijichi H, Koike K. PD-1 Blockade in Tumors with Mismatch-Repair Deficiency[J]. N Engl J Med, 2015, 373: 1979. doi:  10.1056/NEJMc1510353
    [15] Chen PL, Roh W, Reuben A, et al. Analysis of Immune Signatures in Longitudinal Tumor Samples Yields Insight into Biomarkers of Response and Mechanisms of Resistance to Immune Checkpoint Blockade[J]. Cancer Discov, 2016, 6: 827-837. doi:  10.1158/2159-8290.CD-15-1545
    [16] Wolchok JD, Hoos A, O'Day S, et al. Guidelines for the evaluation of immune therapy activity in solid tumors: immune-related response criteria[J]. Clin Cancer Res, 2009, 15: 7412-7420. doi:  10.1158/1078-0432.CCR-09-1624
    [17] Seymour L, Bogaerts J, Perrone A, et al. iRECIST: guidelines for response criteria for use in trials testing immunotherapeutics[J]. Lancet Oncol, 2017, 18: e143-e152. doi:  10.1016/S1470-2045(17)30074-8
    [18] Hodi FS, Ballinger M, Lyons B, et al. Immune-Modified Response Evaluation Criteria In Solid Tumors (imRECIST): Refining Guidelines to Assess the Clinical Benefit of Cancer Immunotherapy[J]. J Clin Oncol, 2018, 36: 850-858. doi:  10.1200/JCO.2017.75.1644
    [19] Nishino M, Gargano M, Suda M, et al. Optimizing immune-related tumor response assessment: does reducing the number of lesions impact response assessment in melanoma patients treated with ipilimumab?[J]. J Immunother Cancer, 2014, 2: 17. doi:  10.1186/2051-1426-2-17
    [20] Chiou VL, Burotto M. Pseudoprogression and Immune-Related Response in Solid Tumors[J]. J Clin Oncol, 2015, 33: 3541-3543. doi:  10.1200/JCO.2015.61.6870
    [21] Champiat S, Dercle L, Ammari S, et al. Hyper-progressive Disease Is a New Pattern of Progression in Cancer Patients Treated by Anti-PD-1/PD-L1[J]. Clin Cancer Res, 2017, 23: 1920-1928. doi:  10.1158/1078-0432.CCR-16-1741
    [22] Billan S, Kaidar-Person O, Gil Z. Treatment after progres-sion in the era of immunotherapy[J]. Lancet Oncol, 2020, 21: e463-e476. doi:  10.1016/S1470-2045(20)30328-4
    [23] Herzog TJ, Arguello D, Reddy SK, et al. PD-1, PD-L1 expression in 1599 gynecological cancers: Implications for immun-otherapy[J]. Gynecol Oncol, 2015, 137: 204-205. http://www.sciencedirect.com/science?_ob=ShoppingCartURL&_method=add&_eid=1-s2.0-S0090825815005181&originContentFamily=serial&_origin=article&_ts=1432852546&md5=937cda677e9c1831200f7c75e7ade9ba
    [24] Bonneville R, Krook MA, Kautto EA, et al. Landscape of Microsatellite Instability Across 39 Cancer Types[J]. JCO Precis Oncol, 2017, 2017: PO. 17.00073. http://www.onacademic.com/detail/journal_1000042311051799_bccd.html
    [25] Shao C, Li G, Huang L, et al. Prevalence of High Tumor Mutational Burden and Association With Survival in Patients With Less Common Solid Tumors[J]. JAMA Netw Open, 2020, 3: e2025109. doi:  10.1001/jamanetworkopen.2020.25109
    [26] Le DT, Durham JN, Smith KN, et al. Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade[J]. Science, 2017, 357: 409-413. doi:  10.1126/science.aan6733
    [27] Marabelle A, Le DT, Ascierto PA, et al. Efficacy of Pembrolizumab in Patients With Noncolorectal High Microsa-tellite Instability/Mismatch Repair-Deficient Cancer: Results From the Phase Ⅱ KEYNOTE-158 Study[J]. J Clin Oncol, 2020, 38: 1-10.
    [28] Marabelle A, Fakih M, Lopez J, et al. Association of tumour mutational burden with outcomes in patients with advanced solid tumours treated with pembrolizumab: prospective biomarker analysis of the multicohort, open-label, phase 2 KEYNOTE-158 study[J]. Lancet Oncol, 2020, 21: 1353-1365. doi:  10.1016/S1470-2045(20)30445-9
    [29] Ott PA, Bang YJ, Berton-Rigaud D, et al. Safety and Antitumor Activity of Pembrolizumab in Advanced Programmed Death Ligand 1-Positive Endometrial Cancer: Results From the KEYNOTE-028 Study[J]. J Clin Oncol, 2017, 35: 2535-2541. doi:  10.1200/JCO.2017.72.5952
    [30] Azad NS, Gray RJ, Overman MJ, et al. Nivolumab Is Effective in Mismatch Repair-Deficient Noncolorectal Cancers: Results From Arm Z1D-A Subprotocol of the NCI-MATCH (EAY131) Study[J]. J Clin Oncol, 2020, 38: 214-222. http://www.ncbi.nlm.nih.gov/pubmed/31765263
    [31] Oaknin A, Gilbert L, Tinker A, et al. Interim analysis of the immune-related endpoints of the mismatch repair deficient (dMMR) and proficient (MMRp) endometrial cancer cohorts from the GARNET study[C/OL]. Society of Gynecological Oncology 2021 Virtual Annual Meeting on Women's Cancer, 2021. (2021-03-19)[2021-08-23]. https://www.gynecolog-iconcology-online.net/article/S0090-8258(21)00672-7/fulltext.
    [32] Antill YC, Kok PS, Robledo KP, et al. Activity of durvalumab in advanced endometrial cancer (AEC) accord-ing to mismatch repair (MMR) status: The phase Ⅱ PHAEDRA trial (ANZGOG1601)[J]. J Clin Oncol, 2019, 37: 5501. doi:  10.1200/JCO.2019.37.15_suppl.5501
    [33] Konstantinopoulos PA, Luo W, Liu JF, et al. Phase Ⅱ Study of Avelumab in Patients With Mismatch Repair Deficient and Mismatch Repair Proficient Recurrent/Persistent Endometrial Cancer[J]. J Clin Oncol, 2019, 37: 2786-2794. doi:  10.1200/JCO.19.01021
    [34] Tamura K, Hasegawa K, Katsumata N, et al. Efficacy and safety of nivolumab in Japanese patients with uterine cervical cancer, uterine corpus cancer, or soft tissue sarcoma: Multicenter, open-label phase 2 trial[J]. Cancer Sci, 2019, 110: 2894-2904. doi:  10.1111/cas.14148
    [35] Fleming GF, Emens LA, Eder J, et al. Clinical activity, safety and biomarker results from a phase Ⅰa study of atezolizumab (atezo) in advanced/recurrent endometrial cancer (rEC)[J]. J Clin Oncol, 2017, 35: 5585. doi:  10.1200/JCO.2017.35.15_suppl.5585
    [36] Huang Y, Kim BYS, Chan CK, et al. Improving immune-vascular crosstalk for cancer immunotherapy[J]. Nat Rev Immunol, 2018, 18: 195-203. doi:  10.1038/nri.2017.145
    [37] Makker V, Taylor MH, Aghajanian C, et al. Lenvatinib Plus Pembrolizumab in Patients With Advanced Endometrial Cancer[J]. J Clin Oncol, 2020, 38: 2981-2992. doi:  10.1200/JCO.19.02627
    [38] Makker V, Colombo N, Herráez AC, et al. A multicenter, open-label, randomized, phase Ⅲ study to compare the efficacy and safety of lenvatinib in combination with pembrolizumab versus treatment of physician's choice in patients with advanced endometrial cancer[C/OL]. Society of Gynecological Oncology 2021 Virtual Annual Meeting on Women's Cancer, 2021. (2021-03-19)[2021-08-23]. https://www.gynecolo-gicon-cology-online.net/article/S0090-8258(21)00657-0/fulltext.
    [39] Zitvogel L, Kepp O, Kroemer G. Immune parameters affecting the efficacy of chemotherapeutic regimens[J]. Nat Rev Clin Oncol, 2011, 8: 151-160. doi:  10.1038/nrclinonc.2010.223
    [40] Samanta D, Park Y, Ni X, et al. Chemotherapy induces enrichment of CD47+/CD73+/PDL1+ immune evasive triple-negative breast cancer cells[J]. Proc Natl Acad Sci U S A, 2018, 115: E1239-E1248. doi:  10.1073/pnas.1718197115
    [41] Wang W, Kryczek I, Dostál L, et al. Effector T Cells Abrogate Stroma-Mediated Chemoresistance in Ovarian Cancer[J]. Cell, 2016, 165: 1092-1105. doi:  10.1016/j.cell.2016.04.009
    [42] Pineda MJ, Schilder J, Hill EK, et al. A Big Ten Cancer Research Consortium phase Ⅱ trial of pembrolizumab with carboplatin and paclitaxel for advanced or recurrent endometrial cancer[J]. J Clin Oncol, 2020, 38: 6022. doi:  10.1200/JCO.2020.38.15_suppl.6022
    [43] Liu Y, Wu L, Tong R, et al. PD-1/PD-L1 Inhibitors in Cervical Cancer[J]. Front Pharmacol, 2019, 10: 65. doi:  10.3389/fphar.2019.00065
    [44] Frenel JS, Le Tourneau C, O'Neil B, et al. Safety and Efficacy of Pembrolizumab in Advanced, Programmed Death Ligand 1-Positive Cervical Cancer: Results From the Phase Ⅰb KEYNOTE-028 Trial[J]. J Clin Oncol, 2017, 35: 4035-4041. doi:  10.1200/JCO.2017.74.5471
    [45] Chung HC, Ros W, Delord JP, et al. Efficacy and Safety of Pembrolizumab in Previously Treated Advanced Cervical Cancer: Results From the Phase Ⅱ KEYNOTE-158 Study[J]. J Clin Oncol, 2019, 37: 1470-1478. doi:  10.1200/JCO.18.01265
    [46] Naumann RW, Hollebecque A, Meyer T, et al. Safety and Efficacy of Nivolumab Monotherapy in Recurrent or Metastatic Cervical, Vaginal, or Vulvar Carcinoma: Results From the Phase Ⅰ/Ⅱ CheckMate 358 Trial[J]. J Clin Oncol, 2019, 37: 2825-2834. doi:  10.1200/JCO.19.00739
    [47] Santin AD, Deng W, Frumovitz M, et al. Phase Ⅱ evaluation of nivolumab in the treatment of persistent or recurrent cervical cancer (NCT02257528/NRG-GY002)[J]. Gynecol Oncol, 2020, 157: 161-166. doi:  10.1016/j.ygyno.2019.12.034
    [48] Wu X, Xia L, Zhou Q, et al. Gls-010, a novel anti-PD-1 mAb in Chinese patients with recurrent or metastatic cervical cancer: Results from a multicenter, open-label and single-arm phase Ⅱ trial[J]. J Clin Oncol, 2020, 38: 6032. doi:  10.1200/JCO.2020.38.15_suppl.6032
    [49] Tewari KS, Monk BJ, Vergote I, et al. VP4-2021: EMPOWER-Cervical 1/GOG-3016/ENGOT-cx9: Interim analy-sis of phase Ⅲ trial of cemiplimab vs. investigator's choice (IC) chemotherapy (chemo) in recurrent/metastatic (R/M) cervical carcinoma[J]. Ann Oncol, 2021, 32: 940-941. doi:  10.1016/j.annonc.2021.04.009
    [50] Colombo N, Dubot C, Lorusso D, et al. Pembrolizumab for Persistent, Recurrent, or Metastatic Cervical Cancer[J]. Engl J Med, 2021. doi:  10.1056/NEJMoa2112435.Epubaheadofprint.
    [51] O'malley DM, Oaknin A, Monk BJ, et al. LBA34 Single-agent anti-PD-1 balstilimab or in combination with anti-CTLA-4 zalifrelimab for recurrent/metastatic (R/M) cervi-cal cancer (CC): Preliminary results of two independent phase Ⅱ trials-ScienceDirect[J]. Ann Oncol, 2020, 31: S1164-S1165. doi:  10.1016/j.annonc.2020.08.2264
    [52] Naumann RW, Oaknin A, Meyer T, et al. Efficacy and safety of nivolumab (Nivo) + ipilimumab (Ipi) in patients (pts) with recurrent/metastatic (R/M) cervical cancer: Results from CheckMate 358[J]. Ann Oncol, 2019, 30: v898-v899. doi:  10.1093/annonc/mdz394.059
    [53] Lan C, Shen J, Wang Y, et al. Camrelizumab Plus Apatinib in Patients With Advanced Cervical Cancer (CLAP): A Multicenter, Open-Label, Single-Arm, Phase Ⅱ Trial[J]. J Clin Oncol, 2020, 38: 4095-4106. doi:  10.1200/JCO.20.01920
    [54] Xia L, Zhou Q, Zhang Y, et al. 840P Famitinib malate plus camrelizumab for recurrent platinum-resistant ovarian/fallopian tube/primary peritoneal cancer and advanced cervical cancer: An open-label, multicenter phase Ⅱ study[J]. Ann Oncol, 2020, 31: S630.
    [55] Xu Q, Chen CB, Sun Y, et al. Anlotinib plus sintilimab in patients with recurrent advanced cervical cancer: A prospective, multicenter, single-arm, phase Ⅱ clinical trial[C]. Chicago: ASCO, 2021: abs 5524.
    [56] Friedman CF, Snyder Charen A, Zhou Q, et al. Phase Ⅱ study of atezolizumab in combination with bevacizumab in patients with advanced cervical cancer[J]. J Immunother Cancer, 2020, 8: e001126. doi:  10.1136/jitc-2020-001126
    [57] Wang M, Fan W, Ye M, et al. Molecular profiles and tumor mutational burden analysis in Chinese patients with gynecologic cancers[J]. Sci Rep, 2018, 8: 8990. doi:  10.1038/s41598-018-25583-6
    [58] Chin CD, Fares CM, Campos M, et al. Association of PD-L1 expression by immunohistochemistry and gene microarray with molecular subtypes of ovarian tumors[J]. Mod Pathol, 2020, 33: 2001-2010. doi:  10.1038/s41379-020-0567-3
    [59] Brahmer JR, Tykodi SS, Chow LQ, et al. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer[J]. N Engl J Med, 2012, 366: 2455-2465. doi:  10.1056/NEJMoa1200694
    [60] Hamanishi J, Mandai M, Ikeda T, et al. Safety and Antitumor Activity of Anti-PD-1 Antibody, Nivolumab, in Patients With Platinum-Resistant Ovarian Cancer[J]. J Clin Oncol, 2015, 33: 4015-4022. doi:  10.1200/JCO.2015.62.3397
    [61] Hamanishi J, Takeshima N, Katsumata N, et al. Nivolumab Versus Gemcitabine or Pegylated Liposomal Doxor-ubicin for Patients With Platinum-Resistant Ovarian Cancer: Open-Label, Randomized Trial in Japan (NINJA)[J]. J Clin Oncol, 2021: JCO2100334. doi:  10.1200/JCO.21.00334.Epubaheadofprint.
    [62] Varga A, Piha-Paul S, Ott PA, et al. Pembrolizumab in patients with programmed death ligand 1-positive advanced ovarian cancer: Analysis of KEYNOTE-028[J]. Gynecol Oncol, 2019, 152: 243-250. doi:  10.1016/j.ygyno.2018.11.017
    [63] Matulonis UA, Shapira R, Santin A, et al. Final results from the KEYNOTE-100 trial of pembrolizumab in patients with advanced recurrent ovarian cancer[J]. J Clin Oncol, 2020, 38: 6005. doi:  10.1200/JCO.2020.38.15_suppl.6005
    [64] Liu JF, Gordon M, Veneris J, et al. Safety, clinical activity and biomarker assessments of atezolizumab from a Phase I study in advanced/recurrent ovarian and uterine cancers[J]. Gynecol Oncol, 2019, 154: 314-322. doi:  10.1016/j.ygyno.2019.05.021
    [65] Disis ML, Taylor MH, Kelly K, et al. Efficacy and Safety of Avelumab for Patients With Recurrent or Refractory Ovarian Cancer: Phase 1b Results From the JAVELIN Solid Tumor Trial[J]. JAMA Oncol, 2019, 5: 393-401. doi:  10.1001/jamaoncol.2018.6258
    [66] Pujade-Lauraine E, Fujiwara K, Ledermann JA, et al. Avelumab alone or in combination with chemotherapy versus chemotherapy alone in platinum-resistant or platinum-refractory ovarian cancer (JAVELIN Ovarian 200): an open-label, three-arm, randomised, phase 3 study[J]. Lancet Oncol, 2021, 22: 1034-1046. doi:  10.1016/S1470-2045(21)00216-3
    [67] Monk BJ, Colombo N, Oza AM, et al. Chemotherapy with or without avelumab followed by avelumab maintenance versus chemotherapy alone in patients with previously untreated epithelial ovarian cancer (JAVELIN Ovarian 100): an open-label, randomised, phase 3 trial[J]. Lancet Oncol, 2021, 22: 1275-1289. doi:  10.1016/S1470-2045(21)00342-9
    [68] O'cearbhaill RE, Homicsko K, Wolfer A, et al. A phase Ⅰ/Ⅱ study of chemo-immunotherapy with durvalumab (durva) and pegylated liposomal doxorubicin (PLD) in platinum-resistant recurrent ovarian cancer (PROC): Genomic sequencing and updated efficacy results[J]. Gynecol Oncol, 2020, 159: 41.
    [69] Lee EK, Xiong N, Cheng SC, et al. Combined pembrolizumab and pegylated liposomal doxorubicin in platinum resistant ovarian cancer: A phase 2 clinical trial[J]. Gynecol Oncol, 2020, 159: 72-78. http://www.sciencedirect.com/science/article/pii/S0090825820336635
    [70] Walsh CS, Kamrava M, Rogatko A, et al. Phase Ⅱ trial of cisplatin, gemcitabine and pembrolizumab for platinum-resistant ovarian cancer[J]. PLoS One, 2021, 16: e0252665. doi:  10.1371/journal.pone.0252665
    [71] Zamarin D, Burger RA, Sill MW, et al. Randomized Phase Ⅱ Trial of Nivolumab Versus Nivolumab and Ipilimumab for Recurrent or Persistent Ovarian Cancer: An NRG Oncology Study[J]. J Clin Oncol, 2020, 38: 1814-1823. doi:  10.1200/JCO.19.02059
    [72] Moroney JW, Powderly J, Lieu CH, et al. Safety and Clinical Activity of Atezolizumab Plus Bevacizumab in Patients with Ovarian Cancer: A Phase Ⅰb Study[J]. Clin Cancer Res, 2020, 26: 5631-5637. doi:  10.1158/1078-0432.CCR-20-0477
    [73] Liu JF, Herold C, Gray KP, et al. Assessment of Combined Nivolumab and Bevacizumab in Relapsed Ovarian Cancer: A Phase 2 Clinical Trial[J]. JAMA Oncol, 2019, 5: 1731-1738. doi:  10.1001/jamaoncol.2019.3343
    [74] González-Martín A, Chung H, Saada-Bouzid E, et al. Efficacy and safety of lenvatinib plus pembrolizumab in patients with previously treated ovarian cancer in the multicohort phase 2 LEAP-005 study[J]. Int J Gynecol Cancer, 2020, 30: A1-A2. http://www.researchgate.net/publication/346883268_2_Efficacy_and_safety_of_lenvatinib_plus_pembrolizumab_in_patients_with_previously_treated_ovarian_cancer_in_the_multicohort_phase_2_LEAP-005_study
    [75] Drew Y, Kaufman B, Banerjee S, et al. Phase Ⅱ study of olaparib + durvalumab (MEDIOLA): Updated results in germline BRCA-mutated platinum-sensitive relapsed (PSR) ovarian cancer (OC)[J]. Ann Oncol, 2019, 30: v485-v486.
    [76] Konstantinopoulos PA, Waggoner S, Vidal GA, et al. Single-Arm Phases 1 and 2 Trial of Niraparib in Combination With Pembrolizumab in Patients With Recurrent Platinum-Resistant Ovarian Carcinoma[J]. JAMA Oncol, 2019, 5: 1141-1149. doi:  10.1001/jamaoncol.2019.1048
    [77] Zsiros E, Lynam S, Attwood KM, et al. Efficacy and Safety of Pembrolizumab in Combination With Bevacizumab and Oral Metronomic Cyclophosphamide in the Treatment of Recurrent Ovarian Cancer: A Phase 2 Nonrandomized Clinical Trial[J]. JAMA Oncol, 2021, 7: 78-85. doi:  10.1001/jamaoncol.2020.5945
    [78] Drew Y, Penson RT, O'malley DM, et al. 814MO Phase Ⅱ study of olaparib (O) plus durvalumab (D) and bevac-izumab (B) (MEDIOLA): Initial results in patients (pts) with non-germline BRCA-mutated (non-gBRCAm) platinum sensitive relapsed (PSR) ovarian cancer (OC)[J]. Ann Oncol, 2020, 31: S615-S616.
    [79] Moore KN, Bookman M, Sehouli J, et al. Atezolizumab, Bevacizumab, and Chemotherapy for Newly Diagnosed Stage Ⅲ or Ⅳ Ovarian Cancer: Placebo-Controlled Randomized Phase Ⅲ Trial (IMagyn050/GOG 3015/ENGOT-OV39)[J]. J Clin Oncol, 2021, 39: 1842-1855. doi:  10.1200/JCO.21.00306
    [80] Ghorani E, Kaur B, Fisher RA, et al. Pembrolizumab is effective for drug-resistant gestational trophoblastic neoplasia[J]. Lancet, 2017, 390: 2343-2345. doi:  10.1016/S0140-6736(17)32894-5
    [81] Huang M, Pinto A, Castillo RP, et al. Complete Serologic Response to Pembrolizumab in a Woman With Chemoresis-tant Metastatic Choriocarcinoma[J]. J Clin Oncol, 2017, 35: 3172-3174. doi:  10.1200/JCO.2017.74.4052
    [82] Choi MC, Oh J, Lee C. Effective anti-programmed cell death 1 treatment for chemoresistant gestational trophoblastic neoplasia[J]. Eur J Cancer, 2019, 121: 94-97. doi:  10.1016/j.ejca.2019.08.024
    [83] 程红燕, 杨隽钧, 赵峻, 等. PD-1抑制剂治疗耐药复发妊娠滋养细胞肿瘤的初步探讨[J]. 中华妇产科杂志, 2020, 55: 390-394. doi:  10.3760/cma.j.cn112141-20191121-00636
    [84] You B, Bolze PA, Lotz JP, et al. Avelumab in Patients With Gestational Trophoblastic Tumors With Resistance to Single-Agent Chemotherapy: Cohort A of the TROPHIMMUN Phase Ⅱ Trial[J]. J Clin Oncol, 2020, 38: 3129-3137. doi:  10.1200/JCO.20.00803
    [85] Cheng H, Yang J, Zhao J, et al. 177 Camrelizumab combined with apatinib for refractory gestational trophoblastic neoplasia: A phase 2, single-arm, prospective Study[J]. Int J Gynecol Cancer, 2020, 30: A76-A77. http://www.researchgate.net/publication/346883145_177_Camrelizumab_combined_with_apatinib_for_refractory_gestational_trophoblastic_neoplasia_A_phase_2_single-arm_prospective_Study
    [86] Curti BD, Faries MB. Recent Advances in the Treatment of Melanoma[J]. N Engl J Med, 2021, 384: 2229-2240. doi:  10.1056/NEJMra2034861
    [87] Indini A, Di Guardo L, Cimminiello C, et al. Investigating the role of immunotherapy in advanced/recurrent female genital tract melanoma: a preliminary experience[J]. J Gynecol Oncol, 2019, 30: e94. doi:  10.3802/jgo.2019.30.e94
    [88] Frommer RS, Mileshkin L, Manzyuk L, et al. Pembroli-zumab for Vulvar Squamous Cell Carcinoma: Results From the Phase 2 KEYNOTE-158 Study[C/OL]. Society of Gynecological Oncology 2021 Virtual Annual Meeting on Women's Cancer; 2021. (2021-03-19)[2021-08-23]. https://www.gynecologiconcology-online.net/article/S0090-8258(21)00728-9/fulltext.
    [89] Haanen JBAG, Carbonnel F, Robert C, et al. Management of toxicities from immunotherapy: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up[J]. Ann Oncol, 2017, 28: iv119-iv142. doi:  10.1093/annonc/mdx225
    [90] Puzanov I, Diab A, Abdallah K, et al. Managing toxicities associated with immune checkpoint inhibitors: consensus recommendations from the Society for Immunotherapy of Cancer (SITC) Toxicity Management Working Group[J]. J Immunother Cancer, 2017, 5: 95. doi:  10.1186/s40425-017-0300-z
    [91] National Comprehensive Cancer Network. NCCN Clinical Practice Guidelines in Oncology: Management of Immunotherapy-Related Toxicities (Version 3. 2021)[EB/OL]. [2021-08-13]. https://www.nccn.org/professionals/physician_gls/pdf/immuno-therapy.pdf.
    [92] Teufel A, Zhan T, Härtel N, et al. Management of immune related adverse events induced by immune checkpoint inhibition[J]. Cancer Lett, 2019, 456: 80-87. doi:  10.1016/j.canlet.2019.04.018
    [93] Bertrand A, Kostine M, Barnetche T, et al. Immune related adverse events associated with anti-CTLA-4 antibodies: systematic review and meta-analysis[J]. BMC Med, 2015, 13: 211. doi:  10.1186/s12916-015-0455-8
    [94] Wang PF, Chen Y, Song SY, et al. Immune-Related Adverse Events Associated with Anti-PD-1/PD-L1 Treatment for Malignancies: A Meta-Analysis[J]. Front Pharmacol, 2017, 8: 730. doi:  10.3389/fphar.2017.00730
    [95] Wang DY, Salem JE, Cohen JV, et al. Fatal Toxic Effects Associated With Immune Checkpoint Inhibitors: A Syste-matic Review and Meta-analysis[J]. JAMA Oncol, 2018, 4: 1721-1728. doi:  10.1001/jamaoncol.2018.3923
    [96] Yuen C, Fleming G, Meyers M, et al. Myasthenia gravis induced by avelumab[J]. Immunotherapy, 2019, 11: 1181-1185. doi:  10.2217/imt-2019-0106
    [97] Minion LE, Tewari KS. Cervical cancer-State of the science: From angiogenesis blockade to checkpoint inhibition[J]. Gynecol Oncol, 2018, 148: 609-621. doi:  10.1016/j.ygyno.2018.01.009
    [98] Naidoo J, Wang X, Woo KM, et al. Pneumonitis in Patients Treated With Anti-Programmed Death-1/Programmed Death Ligand 1 Therapy[J]. J Clin Oncol, 2017, 35: 709-717. doi:  10.1200/JCO.2016.68.2005
    [99] Naidoo J, Page DB, Li BT, et al. Toxicities of the anti-PD-1 and anti-PD-L1 immune checkpoint antibodies[J]. Ann Oncol, 2015, 26: 2375-2391. doi:  10.1093/annonc/mdv383
    [100] Khunger M, Rakshit S, Pasupuleti V, et al. Incidence of Pneumonitis With Use of Programmed Death 1 and Programmed Death-Ligand 1 Inhibitors in Non-Small Cell Lung Cancer: A Systematic Review and Meta-Analysis of Trials[J]. Chest, 2017, 152: 271-281. doi:  10.1016/j.chest.2017.04.177
    [101] Nishino M, Giobbie-Hurder A, Hatabu H, et al. Incidence of Programmed Cell Death 1 Inhibitor-Related Pneumonitis in Patients With Advanced Cancer: A Systematic Review and Meta-analysis[J]. JAMA Oncol, 2016, 2: 1607-1616. doi:  10.1001/jamaoncol.2016.2453
    [102] Suresh K, Voong KR, Shankar B, et al. Pneumonitis in Non-Small Cell Lung Cancer Patients Receiving Immune Checkpoint Immunotherapy: Incidence and Risk Factors[J]. J Thorac Oncol, 2018, 13: 1930-1939. doi:  10.1016/j.jtho.2018.08.2035
    [103] Cho JY, Kim J, Lee JS, et al. Characteristics, incidence, and risk factors of immune checkpoint inhibitor-related pneumonitis in patients with non-small cell lung cancer[J]. Lung Cancer, 2018, 125: 150-156. doi:  10.1016/j.lungcan.2018.09.015
    [104] Champiat S, Lambotte O, Barreau E, et al. Management of immune checkpoint blockade dysimmune toxicities: a collaborative position paper[J]. Ann Oncol, 2016, 27: 559-574. doi:  10.1093/annonc/mdv623
    [105] Nakajima EC, Lipson EJ, Brahmer JR. Challenge of Rechallenge: When to Resume Immunotherapy Following an Immune-Related Adverse Event[J]. J Clin Oncol, 2019, 37: 2714-2718. doi:  10.1200/JCO.19.01623
    [106] Champiat S, Ferrara R, Massard C, et al. Hyperprogresive disease: recognizing a novel pattern to improve patient management[J]. Nat Rev Clin Oncol, 2018, 15: 748-762. doi:  10.1038/s41571-018-0111-2
    [107] Saâda-Bouzid E, Defaucheux C, Karabajakian A, et al. Hyperprogression during anti-PD-1/PD-L1 therapy in patients with recurrent and/or metastatic head and neck squamous cell carcinoma[J]. Ann Oncol, 2017, 28: 1605-1611. doi:  10.1093/annonc/mdx178
    [108] Ferrara R, Mezquita L, Texier M, et al. Hyperprogresive disease in patients with advanced non-small cell lung cancer treated with PD-1/ PD-L1 inhibitors or with single-agent chemotherapy[J]. JAMA Oncol, 2018, 4: 1543-1552. doi:  10.1001/jamaoncol.2018.3676
    [109] Kato S, Goodman A, Walavalkar V, et al. Hyperprogres-sors after Immunotherapy: Analysis of Genomic Alterations Associated with Accelerated Growth Rate[J]. Clin Cancer Res, 2017, 23: 4242-4250. doi:  10.1158/1078-0432.CCR-16-3133
    [110] Sharon E. Can an Immune Checkpoint Inhibitor (Sometimes) Make Things Worse?[J]. Clin Cancer Res, 2017, 23: 1879-1881. doi:  10.1158/1078-0432.CCR-16-2926
    [111] Park JH, Chun SH, Lee YG, et al. Hyperprogressive disease and its clinical impact in patients with recurrent and/or metastatic head and neck squamous cell carcinoma treated with immune-checkpoint inhibitors: Korean cancer study group HN 18-12[J]. J Cancer Res Clin Oncol, 2020, 146: 3359-3369. doi:  10.1007/s00432-020-03316-5
    [112] Leonardi GC, Gainor JF, Altan M, et al. Safety of Programmed Death-1 Pathway Inhibitors Among Patients With Non-Small-Cell Lung Cancer and Preexisting Autoimmune Disorders[J]. J Clin Oncol, 2018, 36: 1905-1912. doi:  10.1200/JCO.2017.77.0305
    [113] Spigel DR, McCleod M, Jotte RM, et al. Safety, Efficacy, and Patient-Reported Health-Related Quality of Life and Symptom Burden with Nivolumab in Patients with Advanced Non-Small Cell Lung Cancer, Including Patients Aged 70 Years or Older or with Poor Performance Status (CheckMate 153)[J]. J Thorac Oncol, 2019, 14: 1628-1639. doi:  10.1016/j.jtho.2019.05.010
    [114] Felip E, Ardizzoni A, Ciuleanu T, et al. CheckMate 171: A phase 2 trial of nivolumab in patients with previously treated advanced squamous non-small cell lung cancer, including ECOG PS 2 and elderly populations[J]. Eur J Cancer, 2020, 127: 160-172. doi:  10.1016/j.ejca.2019.11.019
    [115] Uldrick TS, Gonçalves PH, Abdul-Hay M, et al. Assessment of the Safety of Pembrolizumab in Patients With HIV and Advanced Cancer-A Phase 1 Study[J]. JAMA Oncol, 2019, 5: 1332-1339. doi:  10.1001/jamaoncol.2019.2244
    [116] Gonzalez-Cao M, Morán T, Dalmau J, et al. Phase Ⅱ study of durvalumab (MEDI4736) in cancer patients HIV-1-infected[J]. J Clin Oncol, 2019, 37: 2501. doi:  10.1200/JCO.19.00363
    [117] d'Izarny-Gargas T, Durrbach A, Zaidan M. Efficacy and tolerance of immune checkpoint inhibitors in transplant patients with cancer: A systematic review[J]. Am J Transplant, 2020, 20: 2457-2465. doi:  10.1111/ajt.15811
    [118] Arbour KC, Mezquita L, Long N, et al. Impact of Baseline Steroids on Efficacy of Programmed Cell Death-1 and Programmed Death-Ligand 1 Blockade in Patients With Non-Small-Cell Lung Cancer[J]. J Clin Oncol, 2018, 36: 2872-2878. doi:  10.1200/JCO.2018.79.0006
    [119] 广东省药学会. 免疫检查点抑制剂全程化药学服务指引(2019年版)[J]. 今日药学, 2020, 30: 289-307. doi:  10.12048/j.issn.1674-229X.2020.05.001
    [120] Wijn DH, Groeneveld GH, Vollaard AM, et al. Influenza vaccination in patients with lung cancer receiving anti-programmed death receptor 1 immunotherapy does not induce immune-related adverse events[J]. Eur J Cancer, 2018, 104: 182-187. doi:  10.1016/j.ejca.2018.09.012
    [121] Burotto M, Gormaz JG, Samtani S, et al. Viable Pregnancy in a patient with metastatic melanoma treated with double checkpoint immunotherapy[J]. Semin Oncol, 2018, 45: 164-169. doi:  10.1053/j.seminoncol.2018.03.003
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Tables(12)

    Article Metrics

    Article views (1591) PDF downloads(636) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return