Volume 13 Issue 2
Mar.  2022
Turn off MathJax
Article Contents
GAO Zhongshan, REN Ming, MA Yulan, ZHU Lulu. Polymorphism of Gut Microbiota in High Altitude Tibetan Patients with Coronary Artery Heart Disease[J]. Medical Journal of Peking Union Medical College Hospital, 2022, 13(2): 332-340. doi: 10.12290/xhyxzz.2021-0652
Citation: GAO Zhongshan, REN Ming, MA Yulan, ZHU Lulu. Polymorphism of Gut Microbiota in High Altitude Tibetan Patients with Coronary Artery Heart Disease[J]. Medical Journal of Peking Union Medical College Hospital, 2022, 13(2): 332-340. doi: 10.12290/xhyxzz.2021-0652

Polymorphism of Gut Microbiota in High Altitude Tibetan Patients with Coronary Artery Heart Disease

doi: 10.12290/xhyxzz.2021-0652
Funds:

National Natural Science Foundation of China 81760084

Program of Qinghai Clinical Research Center for Cardiovascular Diseases 2019-SF-L2

More Information
  • Corresponding author: MA Yulan, E-mail: mylfamai@163.com
  • Received Date: 2021-09-13
  • Accepted Date: 2021-11-15
  • Available Online: 2022-01-20
  • Publish Date: 2022-03-30
  •   Objective  To analyze the distribution and composition of intestinal flora in Tibetan patients with coronary artery heart disease (CHD) on the Qinghai-Tibet Plateau.  Methods  From September 2018 to September 2020, following patients were recruited: Tibetan CHD patients living in the area of Qinghai-TibetPlateau [altitude 3600-4500 m, Tibetan patients at high altitudes with CHD (HTC)], healthy people [(normal Tibetans at high altitudes(HTN)], Han patients with CHD living in Xining [altitude 2260 m, Han CHD at a middle altitude (MHC)] and Wuhan [altitude 13 m, Han CHD at a low altitude(LHC)], for a long time. Among them, HTC and MHC were all from inpatients of the Department of Cardiology, Affiliated Hospital of Qinghai University. HTN were all from the Physical Examination Center of the Affiliated Hospital of Qinghai University, and LHC were all from inpatients of the Department of Cardiology, the Union Hospital Affiliated to Huazhong University of Science and Technology. The fecal samples were collected, and the 16S rRNA V3-V4 regions of the intestinal flora were DNA sequenced and bioinformatic analysis was performed.  Results  A total of 36 CHD patients (8 HTC, 14 MHC, 14 LHC) and 34 HTN patients that met the inclusion and exclusion criteria were enrolled. α-diversity analysis showed that there was no significant difference in the Shannon index of intestinal flora between HTC and HTN (P=0.091), the Shannon index of intestinal flora in HTC was the highest, followed by MHC, and the lowest in LHC(P=0.025). β-diversity analysis showed that the intestinal flora distribution of HTC was significantly different from that of HTN, MHC and LHC. In the analysis of the composition of intestinal flora, HTC also showed different characteristics from MHC and LHC at the phylum level and genus water. The relative abundance of its pathogenic bacteria, i.e. Streptococcus, Escherichia_Shigella and Klebsiella decreased; the beneficial bacteria, i.e. Faecalibacterium, Prevotella, Catenibacterium and Lactobacillus, were increased in relative abundance.  Conclusions  The intestinal flora of high-altitude Tibetan patients with CHD showed polymorphisms that were different from those of healthy Tibetans at the same altitude and CHD patients at medium and low altitudes.
  • loading
  • [1] Mingji C, Onakpoya IJ, Perera R, et al. Relationship between altitude and the prevalence of hypertension in Tibet: a systematic review[J]. Heart, 2015, 101: 1054-1060. doi:  10.1136/heartjnl-2014-307158
    [2] Faeh D, Gutzwiller F, Bopp M, et al. Lower mortality from coronary heart disease and stroke at higher altitudes in Switzerland[J]. Circulation, 2009, 120: 495-501. doi:  10.1161/CIRCULATIONAHA.108.819250
    [3] Fujimoto N, Matsubayashi K, Miyahara T, et al. The risk factors for ischemic heart disease in Tibetan highlanders[J]. Jpn Heart J, 1989, 30: 27-34. doi:  10.1536/ihj.30.27
    [4] 次仁罗布, 姜铁民, 金峰, 等. 西藏高海拔地区冠心病患者冠状动脉病变特点及其介入治疗疗效观察[J]. 世界最新医学信息文摘, 2018, 18: 13-18. https://www.cnki.com.cn/Article/CJFDTOTAL-WMIA201879006.htm
    [5] Tang WH, Kitai T, Kitai T, et al. Gut Microbiota in Cardiovascular Health and Disease[J]. Circ Res, 2017, 120: 1183-1196. doi:  10.1161/CIRCRESAHA.117.309715
    [6] Jia Z, Zhao X, Liu X, et al. Impacts of the Plateau Environment on the Gut Microbiota and Blood Clinical Indexes in Han and Tibetan Individuals[J]. mSystems, 2020, 5: 1-16.
    [7] Caporaso JG, Kuczynski J, Stombaugh J, et al. QⅡME allows analysis of high-throughput community sequencing data[J]. Nat Methods, 2010, 7: 335-336. doi:  10.1038/nmeth.f.303
    [8] Magoč T, Salzberg SL. FLASH: fast length adjustment of short reads to improve genome assemblies[J]. Bioinformatics, 2011, 27: 2957-2963. doi:  10.1093/bioinformatics/btr507
    [9] Edgar RC, Haas BJ, Clemente JC, et al. UCHIME improves sensitivity and speed of chimera detection[J]. Bioinformatics, 2011, 27: 2194-2200. doi:  10.1093/bioinformatics/btr381
    [10] Edgar RC. Search and clustering orders of magnitude faster than BLAST. Bioinformatics[J]. Bioinformatics, 2010, 26: 2460-2461. doi:  10.1093/bioinformatics/btq461
    [11] Quast C, Pruesse E, Yilmaz P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools[J]. Nucleic Acids Res, 2013, 41: 590-596.
    [12] Gasmi A, Mujawdiya PK, Pivina L, et al. Relationship between gut microbiota, gut hyperpermeability, and obesity[J]. Curr Med Chem, 2020, 27: 1-13. doi:  10.2174/092986732701200218105010
    [13] 胡海兵, 崔立, 郭靓骅, 等. 基于高通量测序技术的冠心病患者肠道菌群多样性研究[J]. 上海交通大学学报(农业科学版), 2016, 34: 1-19. https://www.cnki.com.cn/Article/CJFDTOTAL-SHNX201602001.htm
    [14] Arseneault-Bréard J, Rondeau I, Gilbert K, et al. Combination of Lactobacillus helveticus R0052 and Bifidobacterium longum R0175 reduces post-myocardial infarction depression symptoms and restores intestinal permeability in a rat model[J]. Br J Nutr, 2012, 107: 1793-1799. doi:  10.1017/S0007114511005137
    [15] Lam V, Su J, Koprowski S, et al. Intestinal microbiota determine severity of myocardial infarction in rats[J]. FASEB J, 2012, 26: 1727-1735. doi:  10.1096/fj.11-197921
    [16] Ott SJ, El Mokhtari NE, Musfeldt M, et al. Detection of diverse bacterial signatures in atherosclerotic lesions of patients with coronary heart disease[J]. Circulation, 2006, 113: 929-937. doi:  10.1161/CIRCULATIONAHA.105.579979
    [17] Koren O, Spor A, Felin J, et al. Human oral, gut, and plaque microbiota in patients with atherosclerosis[J]. Proc Natl ACHD Sci USA, 2011, 108: 4592-4598. doi:  10.1073/pnas.1011383107
    [18] Wu P, Chen JN, Chen JJ, et al. Trimethylamine N-oxide promotes apoE-/- mice atherosclerosis by inducing vascular endothelial cell pyroptosis via the SDHB/ROS pathway[J]. J Cell Physiol, 2020, 235: 6582-6591. doi:  10.1002/jcp.29518
    [19] 朱华, 李卓, 苏磊, 等. 冠心病人源肠道菌群小鼠模型的建立及评价[J]. 中国实验动物学报, 2019, 27: 716-724. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGSD201906004.htm
    [20] Zhu LL, Ma ZJ, Ren M, et al. Distinct Features of Gut Microbiota in High-Altitude Tibetan and Middle-Altitude Han Hypertensive Patients[J]. Cardiol Res Pract, 2020, 2020: 1957843.
    [21] Schneeberger M, Everard A, Gómez-Valadés AG, et al. Akkermansia muciniphila inversely correlates with the onset of inflammation, altered adipose tissue metabolism and metabolic disorders during obesity in mice[J]. Sci Rep, 2015, 5: 16643. doi:  10.1038/srep16643
    [22] Ma Y, Zhu L, Ma Z, et al. Distinguishing feature of gut microbiota in Tibetan highland coronary artery disease patients and its link with diet[J]. Sci Rep, 2021, 11: 18486. doi:  10.1038/s41598-021-98075-9
    [23] Courtney HS, Pownall HJ. The structure and function of serum opacity factor: a unique streptococcal virulence determinant that targets high-density lipoproteins[J]. J Biomed Biotechnol, 2010, 2010: 956071.
    [24] Zhang B, Wang X, Xia R, et al. Gut microbiota in coronary artery disease: a friend or foe?[J]. Biosci Rep, 2020, 40: 1-11.
    [25] Li J, Zhao F, Wang Y, et al. Gut microbiota dysbiosis contributes to the development of hypertension[J]. Microbiome, 2017, 5: 14. doi:  10.1186/s40168-016-0222-x
    [26] Zhang M, Zhou L, Wang Y, et al. Faecalibacterium prausnitzii produces butyrate to decrease c-Myc-related metabolism and Th17 differentiation by inhibiting histone deacetylase 3[J]. Int Immunol, 2019, 31: 499-514. doi:  10.1093/intimm/dxz022
    [27] De Vadder F, Kovatcheva-Datchary P, Zitoun C, et al. Microbiota-Produced Succinate Improves Glucose Homeostasis via Intestinal Gluconeogenesis[J]. Cell Metab, 2016, 24: 151-157. doi:  10.1016/j.cmet.2016.06.013
    [28] Kelly TN, Bazzano LA, Ajami NJ, et al. Gut Microbiome Associates With Lifetime Cardiovascular Disease Risk Profile Among Bogalusa Heart Study Participants[J]. Circ Res, 2016, 1198: 956-964.
    [29] Park YE, Kim MS, Shim KW, et al. Effects of Lactobacillus plantarum Q180 on Postprandial Lipid Levels and Intestinal Environment: A Double-Blind, Randomized, Placebo-Controlled, Parallel Trial[J]. Nutrients, 2020, 12: 255. doi:  10.3390/nu12010255
    [30] Malik M, Suboc TM, Tyagi S, et al. Lactobacillus plantarum 299v Supplementation Improves Vascular Endothelial Function and Reduces Inflammatory Biomarkers in Men With Stable Coronary Artery Disease[J]. Circ Res, 2018, 123: 1091-1102. doi:  10.1161/CIRCRESAHA.118.313565
    [31] Gan XT, Ettinger G, Huang CX, et al. Probiotic administration attenuates myocardial hypertrophy and heart failure after myocardial infarction in the rat[J]. Circ Heart Fail, 2014, 7: 491-499. doi:  10.1161/CIRCHEARTFAILURE.113.000978
    [32] Liu H, Chen X, Hu X, et al. Alterations in the gut microbiome and metabolism with coronary artery disease severity[J]. Microbiome, 2019, 7: 68. doi:  10.1186/s40168-019-0683-9
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(1)

    Article Metrics

    Article views (484) PDF downloads(19) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return