留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

骨形态形成蛋白信号在内皮生理及肺动脉高压中的调控机制

赵欣 韦清霞 杨隽

赵欣, 韦清霞, 杨隽. 骨形态形成蛋白信号在内皮生理及肺动脉高压中的调控机制[J]. 协和医学杂志, 2020, 11(6): 720-726. doi: 10.3969/j.issn.1674-9081.2020.06.015
引用本文: 赵欣, 韦清霞, 杨隽. 骨形态形成蛋白信号在内皮生理及肺动脉高压中的调控机制[J]. 协和医学杂志, 2020, 11(6): 720-726. doi: 10.3969/j.issn.1674-9081.2020.06.015
ZHAO Xin, WEI Qing-xia, YANG Jun. The Regulation of Bone Morphogenetic Protein Signaling in Endothelial Physiology and Pulmonary Hypertension[J]. Medical Journal of Peking Union Medical College Hospital, 2020, 11(6): 720-726. doi: 10.3969/j.issn.1674-9081.2020.06.015
Citation: ZHAO Xin, WEI Qing-xia, YANG Jun. The Regulation of Bone Morphogenetic Protein Signaling in Endothelial Physiology and Pulmonary Hypertension[J]. Medical Journal of Peking Union Medical College Hospital, 2020, 11(6): 720-726. doi: 10.3969/j.issn.1674-9081.2020.06.015

骨形态形成蛋白信号在内皮生理及肺动脉高压中的调控机制

doi: 10.3969/j.issn.1674-9081.2020.06.015
基金项目: 

国家自然科学基金 81670054

中国医学科学院医学与健康科技创新工程 2016-I2M-4-003

详细信息
    通讯作者:

    杨隽  电话:0571-88208265,E-mail:yang_jun@zju.edu.cn

  • 中图分类号: R331.3

The Regulation of Bone Morphogenetic Protein Signaling in Endothelial Physiology and Pulmonary Hypertension

More Information
  • 摘要: 骨形态形成蛋白(bone morphogenetic protein, BMP)家族成员除在胚胎发育早期的中胚层形成过程中发挥作用外,其在血管功能紊乱过程中亦发挥重要作用,如参与调控内皮细胞成管、迁移和氧化应激效应等。BMP信号通路的异常与多种心肺血管疾病的发生、发展相关,如肺动脉高压、遗传性出血性毛细血管扩张症和动脉粥样硬化。本文主要阐述BMP信号通路在不同内皮细胞中的功能,以及BMP9和BMP10在肺动脉高压相关病理过程中的调控机制。
    利益冲突:  无
  • 表  1  BMP在不同类型内皮细胞中的作用及机制

    BMP配体 Ⅰ型受体 Ⅱ型受体 内皮细胞类型 生理作用 相关机制 文献
    BMP2 ALK3(BMPR1A) BMPRⅡ HUVEC 上调迁移、成管能力 - [11]
    BMP4 ALK6(BMPR1B) ACTRⅡA 小鼠PVEC 上调增殖能力 上调VEGF [30]
    ACTRⅡB 小鼠视网膜血管内皮细胞 下调成管能力 下调VEGF和基质金属蛋白酶-9 [16]
    BMP2/4 BAEC 上调增殖、成管能力 上调VEGF [31]
    BMP9 ALK1 BMPRⅡ HPAEC 上调成管能力 上调内皮素-1 [18]
    ALK2 BMPRⅡA EC 上调增殖、成管能力 上调VEGFR/Tie2 [17]
    ACTRⅡB BAEC
    HMEC
    下调增殖、迁移能力
    下调增殖、迁移能力
    -
    -
    [20-21]
    [20-21]
    BMP9/10 小鼠视网膜血管内皮细胞 下调成管能力 - [26, 28]
    HUVEC 下调成管能力 上调Notch通路 [28-29]
    BMP:骨形态形成蛋白; ALK:活化素受体样激酶; BMPR:骨形态形成蛋白受体; ACTR:活化素受体; HUVEC:人脐静脉内皮细胞; PVEC:肺血管内皮细胞; BAEC:牛动脉内皮细胞; HPAEC:人肺动脉内皮细胞; EC:内皮细胞; HMEC:人皮肤微血管内皮细胞; VEGF:血管内皮生长因子; VEGFR:血管内皮生长因子受体; Tie2:酪氨酸蛋白激酶2;-:尚不明确
    下载: 导出CSV
  • [1] Wiley DM, Jin SW. Bone Morphogenetic Protein functions as a context-dependent angiogenic cue in vertebrates[J]. Semin Cell Dev Biol, 2011, 22: 1012-1018. doi:  10.1016/j.semcdb.2011.10.005
    [2] Bandyopadhyay A, Yadav PS, Prashar P. BMP signaling in development and diseases: a pharmacological perspective[J]. Biochem Pharmacol, 2013, 85: 857-864. doi:  10.1016/j.bcp.2013.01.004
    [3] Miyazono K, Kamiya Y, Morikawa M. Bone morphogenetic protein receptors and signal transduction[J]. J Biochem, 2010, 147: 35-51. doi:  10.1093/jb/mvp148
    [4] Guignabert C, Bailly S, Humbert M. Restoring BMPRⅡ functions in pulmonary arterial hypertension: opportunities, challenges and limitations[J]. Expert Opin Ther Targets, 2017, 21: 181-190. doi:  10.1080/14728222.2017.1275567
    [5] Trembath RC, Thomson JR, Machado RD, et al. Clinical and molecular genetic features of pulmonary hypertension in patients with hereditary hemorrhagic telangiectasia[J]. N Engl J Med, 2001, 345: 325-334. doi:  10.1056/NEJM200108023450503
    [6] Upton PD, Long L, Trembath RC, et al. Functional characterization of bone morphogenetic protein binding sites and Smad1/5 activation in human vascular cells[J]. Mol Pharmacol, 2008, 73: 539-552. doi:  10.1124/mol.107.041673
    [7] Atkinson C, Stewart S, Upton PD, et al. Primary pulmo-nary hypertension is associated with reduced pulmon-ary vascular expression of type Ⅱ bone morphogenetic protein receptor[J]. Circulation, 2002, 105: 1672-1678. doi:  10.1161/01.CIR.0000012754.72951.3D
    [8] Southwood M, Jeffery TK, Yang X, et al. Regulation of bone morphogenetic protein signalling in human pulmonary vascular development[J]. J Pathol, 2008, 214: 85-95. doi:  10.1002/path.2261
    [9] Tian HY, Mythreye K, Golzio C, et al. Endoglin mediates fibronectin/α5β1 integrin and TGF-β pathway crosstalk in endothelial cells[J]. EMBO J, 2012, 31: 3885-3900. doi:  10.1038/emboj.2012.246
    [10] Wong WT, Tian XY, Chen Y, et al. Bone morphogenic protein-4 impairs endothelial function through oxidative stress-dependent cyclooxygenase-2 upregulation: implica-tions on hypertension[J]. Circ Res, 2010, 107: 984-991. doi:  10.1161/CIRCRESAHA.110.222794
    [11] Finkenzeller G, Hager S, Stark GB. Effects of bone morphogenetic protein 2 on human umbilical vein endothelial cells[J]. Microvasc Res, 2012, 84: 81-85. doi:  10.1016/j.mvr.2012.03.010
    [12] Pi X, Schmitt CE, Xie L, et al. LRP1-dependent endocytic mechanism governs the signaling output of the bmp system in endothelial cells and in angiogenesis[J]. Circ Res, 2012, 111: 564-574. doi:  10.1161/CIRCRESAHA.112.274597
    [13] Tian XY, Yung LH, Wong WT, et al. Bone morphogenic protein-4 induces endothelial cell apoptosis through oxida-tive stress-dependent p38MAPK and JNK pathway[J]. J Mol Cell Cardiol, 2012, 52: 237-244. doi:  10.1016/j.yjmcc.2011.10.013
    [14] de Jesus Perez VA, Alastalo TP, Wu JC, et al. Bone morphogenetic protein 2 induces pulmonary angiogenesis via Wnt-beta-catenin and Wnt-RhoA-Rac1 pathways[J]. J Cell Biol, 2009, 184: 83-99. doi:  10.1083/jcb.200806049
    [15] Wiley DM, Kim JD, Hao J, et al. Distinct signalling pathways regulate sprouting angiogenesis from the dorsal aorta and the axial vein[J]. Nat Cell Biol, 2011, 13: 686-692. doi:  10.1038/ncb2232
    [16] Xu J, Zhu D, Sonoda S, et al. Over-expression of BMP4 inhibits experimental choroidal neovascularization by modulating VEGF and MMP-9[J]. Angiogenesis, 2012, 15: 213-227. doi:  10.1007/s10456-012-9254-4
    [17] Nolan-Stevaux O, Zhong W, Culp S, et al. Endoglin requirement for BMP9 signaling in endothelial cells reveals new mechanism of action for selective anti-endoglin anti-bodies[J]. PLoS One, 2012, 7: e50920. doi:  10.1371/journal.pone.0050920
    [18] Park JE, Shao D, Upton PD, et al. BMP-9 induced endothelial cell tubule formation and inhibition of migration involves Smad1 driven endothelin-1 production[J]. PLoS One, 2012, 7: e30075. doi:  10.1371/journal.pone.0030075
    [19] Poirier O, Ciumas M, Eyries M, et al. Inhibition of apelin expression by BMP signaling in endothelial cells[J]. Am J Physiol Cell Physiol, 2012, 303: C1139-1145. doi:  10.1152/ajpcell.00168.2012
    [20] David L, Mallet C, Mazerbourg S, et al. Identification of BMP9 and BMP10 as functional activators of the orphan activin receptor-like kinase 1 (ALK1) in endothelial cells[J]. Blood, 2007, 109: 1953-1961. doi:  10.1182/blood-2006-07-034124
    [21] Scharpfenecker M, van Dinther M, Liu Z, et al. BMP-9 signals via ALK1 and inhibits bFGF-induced endothelial cell proliferation and VEGF-stimulated angiogenesis[J]. J Cell Sci, 2007, 120: 964-972. doi:  10.1242/jcs.002949
    [22] Yao Y, Jumabay M, Ly A, et al. Crossveinless 2 regulates bone morphogenetic protein 9 in human and mouse vascular endothelium[J]. Blood, 2012, 119: 5037-5047. doi:  10.1182/blood-2011-10-385906
    [23] Moreno-Miralles I, Ren R, Moser M, et al. Bone morphogenetic protein endothelial cell precursor-derived regulator regulates retinal angiogenesis in vivo in a mouse model of oxygen-induced retinopathy[J]. Arterioscler Thromb Vasc Biol, 2011, 31: 2216-2222. doi:  10.1161/ATVBAHA.111.230235
    [24] Appleby SL, Mitrofan CG, Crosby A, et al. Bone Morphogenetic Protein 9 Enhances Lipopolysaccharide-Induced Leukocyte Recruitment to the Vascular Endothelium[J]. J Immunol, 2016, 197: 3302-3314. doi:  10.4049/jimmunol.1601219
    [25] Mitrofan CG, Appleby SL, Nash GB, et al. Bone morphogenetic protein 9 (BMP9) and BMP10 enhance tumor necrosis factor-alpha-induced monocyte recruitment to the vascular endothelium mainly via activin receptor-like kinase 2[J]. J Biol Chem, 2017, 292: 13714-13726. doi:  10.1074/jbc.M117.778506
    [26] Ricard N, Ciais D, Levet S, et al. BMP9 and BMP10 are critical for postnatal retinal vascular remodeling[J]. Blood, 2012, 119: 6162-6171. doi:  10.1182/blood-2012-01-407593
    [27] Somekawa S, Imagawa K, Hayashi H, et al. Tmem100, an ALK1 receptor signaling-dependent gene essential for arterial endothelium differentiation and vascular morphogene-sis[J]. Proc Natl Acad Sci U S A, 2012, 109: 12064-12069. doi:  10.1073/pnas.1207210109
    [28] Larrivee B, Prahst C, Gordon E, et al. ALK1 signaling inhibits angiogenesis by cooperating with the Notch pathway[J]. Dev Cell, 2012, 22: 489-500. doi:  10.1016/j.devcel.2012.02.005
    [29] Moya IM, Umans L, Maas E, et al. Stalk cell phenotype depends on integration of Notch and Smad1/5 signaling cascades[J]. Dev Cell, 2012, 22: 501-514. doi:  10.1016/j.devcel.2012.01.007
    [30] Yao Y, Jumabay M, Wang A, et al. Matrix Gla protein deficiency causes arteriovenous malformations in mice[J]. J Clin Invest, 2011, 121: 2993-3004. doi:  10.1172/JCI57567
    [31] Yao Y, Watson AD, Ji S, et al. Heat shock protein 70 enhances vascular bone morphogenetic protein-4 signaling by binding matrix Gla protein[J]. Circ Res, 2009, 105: 575-584. doi:  10.1161/CIRCRESAHA.109.202333
    [32] Evans JD, Girerd B, Montani D, et al. BMPR2 mutations and survival in pulmonary arterial hypertension: an individual participant data meta-analysis[J]. Lancet Respir Med, 2016, 4: 129-137. doi:  10.1016/S2213-2600(15)00544-5
    [33] Machado RD, Southgate L, Eichstaedt CA, et al. Pul-monary Arterial Hypertension: A Current Perspective on Established and Emerging Molecular Genetic Defects[J]. Hum Mutat, 2015, 36: 1113-1127. doi:  10.1002/humu.22904
    [34] Soubrier F, Chung WK, Machado R, et al. Genetics and genomics of pulmonary arterial hypertension[J]. J Am Coll Cardiol, 2013, 62: D13-D21. doi:  10.1016/j.jacc.2013.10.035
    [35] Shintani M, Yagi H, Nakayama T, et al. A new nonsense mutation of SMAD8 associated with pulmonary arterial hypertension[J]. J Med Genet, 2009, 46: 331-337. doi:  10.1136/jmg.2008.062703
    [36] Wang G, Fan R, Ji R, et al. Novel homozygous BMP9 nonsense mutation causes pulmonary arterial hypertension: a case report[J]. BMC Pulm Med, 2016, 16: 17. doi:  10.1186/s12890-016-0183-7
    [37] Pousada G, Baloira A, Fontan D, et al. Mutational and clinical analysis of the ENG gene in patients with pulmonary arterial hypertension[J]. BMC Genet, 2016, 17: 72. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4893224/
    [38] Yang X, Long L, Southwood M, et al. Dysfunctional Smad signaling contributes to abnormal smooth muscle cell proliferation in familial pulmonary arterial hypertension[J]. Circ Res, 2005, 96: 1053-1063. doi:  10.1161/01.RES.0000166926.54293.68
    [39] Richter A, Yeager ME, Zaiman A, et al. Impaired transforming growth factor-beta signaling in idiopathic pulmonary arterial hypertension[J]. Am J Respir Crit Care Med, 2004, 170: 1340-1348. doi:  10.1164/rccm.200311-1602OC
    [40] Du L, Sullivan CC, Chu D, et al. Signaling molecules in nonfamilial pulmonary hypertension[J]. N Engl J Med, 2003, 348: 500-509. doi:  10.1056/NEJMoa021650
    [41] Gangopahyay A, Oran M, Bauer EM, et al. Bone morphogenetic protein receptor Ⅱ is a novel mediator of endo-thelial nitric-oxide synthase activation[J]. J Biol Chem, 2011, 286: 33134-33140. doi:  10.1074/jbc.M111.274100
    [42] Anderson L, Lowery JW, Frank DB, et al. Bmp2 and Bmp4 exert opposing effects in hypoxic pulmonary hypertension[J]. Am J Physiol Regul Integr Comp Physiol, 2010, 298: R833-R842. doi:  10.1152/ajpregu.00534.2009
    [43] Frank DB, Abtahi A, Yamaguchi DJ, et al. Bone morphogenetic protein 4 promotes pulmonary vascular remodeling in hypoxic pulmonary hypertension[J]. Cir Res, 2005, 97: 496-504. doi:  10.1161/01.RES.0000181152.65534.07
    [44] Long L, Ormiston ML, Yang X, et al. Selective enhance-ment of endothelial BMPR-Ⅱ with BMP9 reverses pulmonary arterial hypertension[J]. Nat Med, 2015, 21: 777-785. doi:  10.1038/nm.3877
    [45] Brock M, Samillan VJ, Trenkmann M, et al. AntagomiR directed against miR-20a restores functional BMPR2 signalling and prevents vascular remodelling in hypoxia-induced pulmonary hypertension[J]. Eur Heart J, 2014, 35: 3203-3211. doi:  10.1093/eurheartj/ehs060
    [46] Feng F, Harper RL, Reynolds PN. BMPR2 gene delivery reduces mutation-related PAH and counteracts TGF-beta-mediated pulmonary cell signalling[J]. Respirology, 2016, 21: 526-532. doi:  10.1111/resp.12712
    [47] Ciuclan L, Sheppard K, Dong L, et al. Treatment with anti-gremlin 1 antibody ameliorates chronic hypoxia/SU5416-induced pulmonary arterial hypertension in mice[J]. Am J Pathol, 2013, 183: 1461-1473. doi:  10.1016/j.ajpath.2013.07.017
    [48] Spiekerkoetter E, Tian X, Cai J, et al. FK506 activates BMPR2, rescues endothelial dysfunction, and reverses pulmonary hypertension[J]. J Clin Invest, 2013, 123: 3600-3613. doi:  10.1172/JCI65592
    [49] Yang J, Li X, Al-Lamki RS, et al. Sildenafil potentiates bone morphogenetic protein signaling in pulmonary arterial smooth muscle cells and in experimental pulmonary hypertension[J]. Arterioscler Thromb Vasc Biol, 2013, 33: 34-42. doi:  10.1161/ATVBAHA.112.300121
    [50] Xing YJ, Zhao SX, Wei QX, et al. A novel piperidine identified by stem cell based screening attenuates pulmonary arterial hypertension via regulating BMP2 and PTGS2 levels[J]. Eur Respir J, 2018, 51:1702229. doi:  10.1183/13993003.02229-2017
  • 加载中
表(1)
计量
  • 文章访问数:  259
  • HTML全文浏览量:  70
  • PDF下载量:  29
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-04-02
  • 录用日期:  2018-07-13
  • 网络出版日期:  2018-07-25
  • 刊出日期:  2020-11-30

目录

    /

    返回文章
    返回

    【温馨提醒】近日,《协和医学杂志》编辑部接到作者反映,有多名不法人员冒充期刊编辑发送见刊通知,鼓动作者添加微信,从而骗取版面费的行为。特提醒您,本刊与作者联系的方式均为邮件通知或电话,稿件进度通知邮箱为:mjpumch@126.com,编辑部电话为:010-69154261,请提高警惕,谨防上当受骗!如有任何疑问,请致电编辑部核实。谢谢!