留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

微小RNA调控干扰素-α在系统性红斑狼疮发病机制中的作用

夏源 李向培

夏源, 李向培. 微小RNA调控干扰素-α在系统性红斑狼疮发病机制中的作用[J]. 协和医学杂志, 2019, 10(6): 673-678. doi: 10.3969/j.issn.1674-9081.2019.06.021
引用本文: 夏源, 李向培. 微小RNA调控干扰素-α在系统性红斑狼疮发病机制中的作用[J]. 协和医学杂志, 2019, 10(6): 673-678. doi: 10.3969/j.issn.1674-9081.2019.06.021
Yuan XIA, Xiang-pei LI. The Role of MicroRNA Regulation of Interferon-α in the Pathogenesis of Systemic Lupus Erythematosus[J]. Medical Journal of Peking Union Medical College Hospital, 2019, 10(6): 673-678. doi: 10.3969/j.issn.1674-9081.2019.06.021
Citation: Yuan XIA, Xiang-pei LI. The Role of MicroRNA Regulation of Interferon-α in the Pathogenesis of Systemic Lupus Erythematosus[J]. Medical Journal of Peking Union Medical College Hospital, 2019, 10(6): 673-678. doi: 10.3969/j.issn.1674-9081.2019.06.021

微小RNA调控干扰素-α在系统性红斑狼疮发病机制中的作用

doi: 10.3969/j.issn.1674-9081.2019.06.021
基金项目: 

国家自然科学基金 81373186

详细信息
    通讯作者:

    李向培 电话:0551-62284333, E-mail:lixiangpei55@126.com

  • 中图分类号: R593.24

The Role of MicroRNA Regulation of Interferon-α in the Pathogenesis of Systemic Lupus Erythematosus

More Information
  • 摘要: 系统性红斑狼疮是一种多系统受累的自身免疫病。干扰素-α作为系统性红斑狼疮免疫紊乱的关键因素, 对其作用机制及信号通路的研究可进一步揭示系统性红斑狼疮的发病机制, 并为该病的临床治疗提供新策略。近年研究发现, 微小RNA在系统性红斑狼疮发病机制中具有重要作用, 且微小RNA异常表达参与Ⅰ型干扰素通路的调节。本文综述了微小RNA对Ⅰ型干扰素通路的调节及其在系统性红斑狼疮发病机制中的作用, 对进一步认识系统性红斑狼疮的发病机制具有重要意义。
    利益冲突  无
  • [1] Luo S, Wang Y, Zhao M, et al. The important roles of type Ⅰ interferon and interferon-inducible genes in systemic lupus erythematosus[J]. Int Immunopharmacol, 2016, 40:542-549. http://www.sciencedirect.com/science/article/pii/S1567576916304179
    [2] Forster SC, Tate MD, Hertzog PJ. MicroRNA as Type Ⅰ Interferon-Regulated Transcripts and Modulators of the Innate Immune Response[J]. Front Immunol, 2015, 6:334. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4495342/
    [3] Hoffmann HH, Schneider WM, Rice CM. Interferons and viruses:an evolutionary arms race of molecular interactions[J]. Trends Immunol, 2015, 36:124-138. http://pubmedcentralcanada.ca/pmcc/articles/PMC4384471/
    [4] Mathian A, Hie M, Cohen-Aubart F, et al. Targeting interferons in systemic lupus erythematosus:current and future prospects[J]. Drugs, 2015, 75:835-846. http://smartsearch.nstl.gov.cn/paper_detail.html?id=b9c92724337b8d50c01cfafb59927bfd
    [5] Mukherjee B, Paul J, Mukherjee S, et al. Antimony-Resistant Leishmania Donovani Exploits miR-466i to Deactivate Host MyD88 for Regulating IL-10/IL-12 Levels during Early Hours of Infection[J]. J Immunol, 2015, 195:2731-2742. http://www.ncbi.nlm.nih.gov/pubmed/26283478
    [6] Rossato M, Affandi AJ, Thordardottir S, et al. Association of MicroRNA-618 Expression With Altered Frequency and Activation of Plasmacytoid Dendritic Cells in Patients With Systemic Sclerosis[J]. Arthritis Rheumatol, 2017, 69:1891-1902. http://europepmc.org/abstract/MED/28556560
    [7] Liu F, Liu C, Hu X, et al. MicroRNA-21:A Positive Regulator for Optimal Production of Type Ⅰ and TypeⅢ Interferon by Plasmacytoid Dendritic Cells[J]. Front Immunol, 2017, 8:947. http://europepmc.org/abstract/MED/28871250
    [8] Liu YJ, Fan WJ, Bai JZ. microRNA-126 expression and its mechanism of action in patients with systemic lupus erythematosus[J]. Eur Rev Med Pharmacol Sci, 2015, 19:3838-3842. http://www.ncbi.nlm.nih.gov/pubmed/26531267
    [9] Tang Y, Luo X, Cui H, et al. MicroRNA-146A contributes to abnormal activation of the type Ⅰ interferon pathway in human lupus by targeting the key signaling proteins[J]. Arthritis Rheum, 2009, 60:1065-1075. doi:  10.1002/art.24436/full
    [10] Papadopoulou AS, Dooley J, Linterman MA, et al. The thymic epithelial microRNA network elevates the threshold for infection-associated thymic involution via miR-29a mediated suppression of the IFN-alpha receptor[J]. Nat Immunol, 2011, 13:181-187. http://europepmc.org/articles/PMC3647613
    [11] Buie JJ, Renaud LL, Muise-Helmericks R, et al. IFN-alpha Negatively Regulates the Expression of Endothelial Nitric Oxide Synthase and Nitric Oxide Production:Implications for Systemic Lupus Erythematosus[J]. J Immunol, 2017, 199:1979-1988.
    [12] Olferiev M, Jacek E, Kirou KA, et al. Novel molecular signatures in mononuclear cell populations from patients with systemic lupus erythematosus[J]. Clin Immunol, 2016, 172:34-43. http://europepmc.org/abstract/MED/27576056
    [13] Chiche L, Jourde-Chiche N, Whalen E, et al. Modular transcriptional repertoire analyses of adults with systemic lupus erythematosus reveal distinct type Ⅰ and type Ⅱ interferon signatures[J]. Arthritis Rheumatol, 2014, 66:1583-1595. http://www.ncbi.nlm.nih.gov/pubmed/24644022
    [14] Khamashta M, Merrill JT, Werth VP, et al. Sifalimumab, an anti-interferon-alpha monoclonal antibody, in moderate to severe systemic lupus erythematosus:a randomised, double-blind, placebo-controlled study[J]. Ann Rheum Dis, 2016, 75:1909-1916.
    [15] Kalunian KC, Merrill JT, Maciuca R, et al. A Phase Ⅱ study of the efficacy and safety of rontalizumab (rhuMAb interferon-alpha) in patients with systemic lupus erythematosus (ROSE)[J]. Ann Rheum Dis, 2016, 75:196-202. http://ard.bmj.com/content/75/1/196
    [16] Furie R, Khamashta M, Merrill JT, et al. Anifrolumab, an Anti-Interferon-alpha Receptor Monoclonal Antibody, in Moderate-to-Severe Systemic Lupus Erythematosus[J]. Arthritis Rheumatol, 2017, 69:376-386.
    [17] Weidenbusch M, Kulkarni OP, Anders HJ. The innate immune system in human systemic lupus erythematosus[J]. Clin Sci (Lond), 2017, 131:625-634. http://europepmc.org/abstract/MED/28351959
    [18] Lopez P, Rodriguez-Carrio J, Caminal-Montero L, et al. A pathogenic IFN alpha, BLyS and IL-17 axis in systemic lupus erythematosus patients[J]. Sci Rep, 2016, 6:20651. http://pubmedcentralcanada.ca/pmcc/articles/PMC4742957/
    [19] Yan S, Yim LY, Lu L, et al. MicroRNA Regulation in Systemic Lupus Erythematosus Pathogenesis[J]. Immune Netw, 2014, 14:138-148. http://www.ncbi.nlm.nih.gov/pubmed/24999310
    [20] Le X, Yu X, Shen N. Novel insights of microRNAs in the development of systemic lupus erythematosus[J]. Curr Opin Rheumatol, 2017, 29:450-457. http://europepmc.org/abstract/MED/28570283
    [21] Wang Z, Chang C, Peng M, et al. Translating epigenetics into clinic:focus on lupus[J]. Clin Epigenetics, 2017, 9:78. http://europepmc.org/abstract/MED/28785369
    [22] Husakova M. MicroRNAs in the key events of systemic lupus erythematosus pathogenesis[J]. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub, 2016, 160:327-342. http://www.ncbi.nlm.nih.gov/pubmed/27003314
    [23] Tang Y, Luo X, Cui H, et al. MicroRNA-146A contributes to abnormal activation of the type Ⅰ interferon pathway in human lupus by targeting the key signaling proteins[J]. Arthritis Rheum, 2009, 60:1065-1075. doi:  10.1002/art.24436/full
    [24] Xu WD, Lu MM, Pan HF, et al. Association of MicroRNA-146a with autoimmune diseases[J]. Inflammation, 2012, 35:1525-1529. http://onlinelibrary.wiley.com/resolve/reference/XREF?id=10.1007/s10753-012-9467-0
    [25] Taganov KD, Boldin MP, Chang KJ, et al. NF-kappaB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses[J]. Proc Natl Acad Sci U S A, 2006, 103:12481-12486. http://abbs.oxfordjournals.org/lookup/ijlink?linkType=ABST&journalCode=pnas&resid=103/33/12481
    [26] Boldin MP, Taganov KD, Rao DS, et al. miR-146a is a significant brake on autoimmunity, myeloproliferation, and cancer in mice[J]. J Exp Med, 2011, 208:1189-1201. http://europepmc.org/abstract/MED/21555486
    [27] Qu B, Cao J, Zhang F, et al. Type Ⅰ Interferon Inhibition of MicroRNA-146a Maturation Through Up-Regulation of Monocyte Chemotactic Protein-Induced Protein 1 in Systemic Lupus Erythematosus[J]. Arthritis Rheumatol, 2015, 67:3209-3218. doi:  10.1002/art.39398/pdf
    [28] Dominguez-Gutierrez PR, Ceribelli A, Satoh M, et al. Positive correlation of STAT1 and miR-146a with anemia in patients with systemic lupus erythematosus[J]. J Clin Immunol, 2014, 34:171-180. http://europepmc.org/abstract/med/24292724
    [29] Smith S, Fernando T, Wu PW, et al. MicroRNA-302d targets IRF9 to regulate the IFN-induced gene expression in SLE[J]. J Autoimmun, 2017, 79:105-111. http://www.ncbi.nlm.nih.gov/pubmed/28318807
    [30] Sarhan RA, Aboelenein HR, Sourour SK, et al. Targeting E2F1 and c-Myc expression by microRNA-17-5p represses interferon-stimulated gene MxA in peripheral blood mononuclear cells of pediatric systemic lupus erythematosus patients[J]. Discov Med, 2015, 19:419-425
    [31] Cheng J, Wu R, Long L, et al. miRNA-451a Targets IFN Regulatory Factor 8 for the Progression of Systemic Lupus Erythematosus[J]. Inflammation, 2017, 40:676-687. doi:  10.1007/s10753-017-0514-8
    [32] Liu YJ, Fan WJ, Bai JZ. microRNA-126 expression and its mechanism of action in patients with systemic lupus erythematosus[J]. Eur Rev Med Pharmacol Sci, 2015, 19:3838-3842. http://www.ncbi.nlm.nih.gov/pubmed/26531267
    [33] Kaga H, Komatsuda A, Omokawa A, et al. Downregulated expression of miR-155, miR-17, and miR-181b, and upregulated expression of activation-induced cytidine deaminase and interferon-alpha in PBMCs from patients with SLE[J]. Mod Rheumatol, 2015, 25:865-870. http://www.ncbi.nlm.nih.gov/pubmed/25775145
    [34] Han X, Wang Y, Zhang X, et al. MicroRNA-130b Ameliorates Murine Lupus Nephritis Through Targeting the Type Ⅰ Interferon Pathway on Renal Mesangial Cells[J]. Arthritis Rheumatol, 2016, 68:2232-2243.
    [35] Dong G, Fan H, Yang Y, et al. 17beta-Estradiol enhances the activation of IFN-alpha signaling in B cells by down-regulating the expression of let-7e-5p, miR-98-5p and miR-145a-5p that target IKKepsilon[J]. Biochim Biophys Acta, 2015, 1852:1585-1598. http://smartsearch.nstl.gov.cn/paper_detail.html?id=cb6b3f966bccc942a2da59b4b2cfb58c
    [36] Wu YW, Tang W, Zuo JP. Toll-like receptors:potential targets for lupus treatment[J]. Acta Pharmacol Sin, 2015, 36:1395-1407. http://pubmedcentralcanada.ca/pmcc/articles/PMC4816237/
    [37] Pan Y, Jia T, Zhang Y, et al. MS2 VLP-based delivery of microRNA-146a inhibits autoantibody production in lupus-prone mice[J]. Int J Nanomedicine, 2012, 7:5957-5967. http://europepmc.org/articles/PMC3518289
    [38] Leiss H, Salzberger W, Jacobs B, et al. MicroRNA 155-deficiency leads to decreased autoantibody levels and reduced severity of nephritis and pneumonitis in pristane-induced lupus[J]. PLoS One, 2017, 12:e0181015. http://europepmc.org/abstract/MED/28719617
  • 加载中
计量
  • 文章访问数:  379
  • HTML全文浏览量:  21
  • PDF下载量:  218
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-07-18
  • 刊出日期:  2019-11-30

目录

    /

    返回文章
    返回

    【温馨提醒】近日,《协和医学杂志》编辑部接到作者反映,有多名不法人员冒充期刊编辑发送见刊通知,鼓动作者添加微信,从而骗取版面费的行为。特提醒您,本刊与作者联系的方式均为邮件通知或电话,稿件进度通知邮箱为:mjpumch@126.com,编辑部电话为:010-69154261,请提高警惕,谨防上当受骗!如有任何疑问,请致电编辑部核实。谢谢!